

THERMAL INTEGRITY PROFILING FOR AUGERED CAST-IN-PLACE PILES -(IMPLEMENTATION PLAN)

BDV25-977-34 Final Report

Gray Mullins, Ph.D., P.E., Principal Investigator and Kevin Johnson, Ph.D., E.I., Co-Principal Investigator

August 2017

Disclaimer

The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation.

APPROXIMATE CONVERSIONS TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
LENGTH				
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL		
	AREA					
in²	square inches	645.2	square millimeters	mm²		
ft ²	square feet	0.093	square meters	m²		
yd²	square yard	0.836	square meters	m²		
ac	acres	0.405	hectares	ha		
mi²	square miles	2.59	square kilometers	km ²		

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
VOLUME				
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
NOTE: volumes greater than 1000 L shall be shown in m ³				

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
MASS					
oz	ounces	28.35	grams	g	
lb	pounds	0.454	kilograms	kg	
Т	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
TEMPERATURE (exact degrees)					
۴	Fahrenheit	5 (F-32)/9 or (F-32)/1.8	Celsius	°C	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
ILLUMINATION				
fc	foot-candles	10.76	lux	lx
fL	foot-Lamberts	3.426	candela/m ²	cd/m ²

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
FORCE and PRESSURE or STRESS				
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
kip	kilopound	4.45	kilonewtons	kN

APPROXIMATE CONVERSIONS TO SI UNITS

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
LENGTH				
mm	millimeters	0.039	inches	in
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
AREA					
mm²	square millimeters	0.0016	square inches	in ²	
m²	square meters	10.764	square feet	ft ²	
m²	square meters	1.195	square yards	yd ²	
ha	hectares	2.47	acres	ac	
km ²	square kilometers	0.386	square miles	mi ²	

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
VOLUME				
mL	milliliters	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL
MASS				
g	grams	0.035	ounces	oz
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000 lb)	Т

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL	
TEMPERATURE (exact degrees)					
°C	Celsius	1.8C+32	Fahrenheit	°F	

SYMBOL	WHEN YOU KNOW MULTIPLY BY		TO FIND	SYMBOL			
ILLUMINATION							
lx	lux	0.0929	foot-candles	fc			
cd/m ²	candela/m ²	0.2919	foot-Lamberts	fl			

SYMBOL	WHEN YOU KNOW	MULTIPLY BY	TO FIND	SYMBOL				
FORCE and PRESSURE or STRESS								
N	newtons	0.225	poundforce	lbf				
kPa	kilopascals	0.145	poundforce per square inch	lbf/in ²				
kN	kilonewtons	0.225	kilopound	kip				

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

Technical Report Documentation Page

	1	0		
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle Thermal Integrity Profiling for Au	gered Cast-In-Place Piles -	5. Report Date May 2017		
Implementation Plan		6. Performing Organization Code		
7. Author(s) G. Mullins and K.R. Johnson		8. Performing Organization Report No.		
9. Performing Organization Name and University of South Florida Department of Civil and Environm	Address nental Engineering	10. Work Unit No. (TRAIS)		
Tampa, FL 33620	55	11. Contract or Grant No. BDV25-977-34		
12. Sponsoring Agency Name and Ado Florida Department of Transp 605 Suwannee Street, MS 30 Tallabassee EL 22200	bortation	13. Type of Report and Period Covered Final Report 10/16 - 8/17		
Tananassee, FL 52599		14. Sponsoring Agency Code		
15. Supplementary Notes FDOT Project Manager:				

David Horhota

16. Abstract

This study was the second in a two-part research program focused on assessing the feasibility of using thermal integrity profiling (TIP) as a quality assurance tool for Augered Cast-In-Place (ACIP) piles. This was made possible by coordinating with the Deep Foundations Institute (DFI) ACIP pile project to demonstrate the strength of the piles in various loading conditions (i.e., tension, compression, and lateral loads), as well as overall pile integrity and the effectiveness of TIP for ACIP piles. In all, seven test piles were equipped with thermal integrity assessment devices. Both probe and thermal wire systems were used to collect data over an extended period of time, thereby providing a means to compare instrumentation methods, schemes, and analysis techniques. One of the seven piles was extracted to assess the validity of on-site inspection methods. The extracted pile was also used as a control for the thermal analysis comparison.

Results from thermal integrity profiling showed promising capabilities to verify the integrity and profile of the as-built piles. Analysis methods that were hypothesized in the original study were vetted and showed good agreement with the physically verified true pile size, shape, and integrity. These methods were further refined to minimize errors associated with simplistic linearization of the inverse hyperbolic tangent relationships.

Both probe and wire systems were shown to provide the same data; however, wire systems have the distinct advantage of reducing cage/reinforcement congestion. PVC access tubes were also shown to be better for small volumes of grout that can be vulnerable to heat sinking with steel tubes.

Like most new developments and the additional information provided for the contractor, thermal profiling has shown that single bar reinforcement is often eccentric and that tighter centralizer spacing would be beneficial. The shape of the pile predicted by thermal evaluation mimicked the actual pile closely, but accurate determination of grout volumes directly affects the thermal analysis results. As such, it is a critical factor in the entire ACIP pile quality assurance program, and improvements are needed in this determination.

17. Key Word Auger-cast pile, thermal integrity test, q	18. Distribution Statement No restrictions.		
19. Security Classif. (of this report) Unclassified.	f. (of this	21. No. of Pages 122	22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Acknowledgments

The authors would like to acknowledge the Florida Department of Transportation for funding this project, with specific thanks to Dr. David Horhota, Juan Castellano, Larry Jones, and the entire review team for their insightful contributions. Special acknowledgement is also extended to the Deep Foundations Institute Augered Cast-In-Place Pile Committee, without whom this project would not have been possible.

Executive Summary

The thermal integrity test has proven to be an effective method to evaluate the integrity of newly constructed drilled shafts (i.e., identifying anomalies, rebar cage alignment, concrete cover, etc.). However, very few auger-cast piles have been tested with this method as standard integrity access tubes are not typically installed. It was the goal of this research to explore the use of the thermal integrity technology for auger-cast piles. The research was performed in two phases; in the first phase, various instrumentation and analysis methods were explored, field data was collected, new equipment options were scrutinized, and numerical modeling was used to show areas of strength or weakness.

This study was the second in the two-part research program focused on assessing the feasibility of using thermal integrity profiling for ACIP piles. This was made possible by coordinating with the Deep Foundations Institute ACIP pile project to demonstrate the strength of the piles in various loading conditions (i.e., tension, compression, and lateral loads). In all, seven test piles were equipped with thermal integrity assessment devices. Both probe and thermal wire systems were used to collect data over an extended period of time, thereby providing a means to compare instrumentation methods, schemes and analysis techniques. One of the seven piles was extracted to assess the validity of on-site inspection methods. The extracted pile was also used as a control for the thermal analysis comparison.

Results from thermal integrity profiling of ACIP piles showed promising capabilities to test the asbuilt piles. Analysis methods that were hypothesized in the original study were vetted and showed good agreement with the true pile size and shape. These methods were further refined to minimize errors associated with simplistic linearization of the inverse hyperbolic tangent relationships.

Both probe and wire systems were shown to provide the same data; however, wire systems have the distinct advantage of reducing cage/reinforcement congestion. PVC access tubes were also shown to be better for small volumes of grout that can be vulnerable to heat sinking with steel tubes.

Like most new developments and the additional information provided for the contractor, thermal profiling has shown that centered single bar reinforcement is critical to TIP effectiveness and that tighter spacing would be beneficial. The shape of the pile predicted by thermal evaluation mimicked the actual pile closely, but accurate determination of grout volumes directly affects the thermal analysis results. As such, it is a critical factor in the entire ACIP pile quality assurance program, and improvements are needed in this determination.

Discla	nimer	ii
Conve	ersion Factors	iii
Techn	ical Report Documentation	vi
Ackno	owledgments	vii
Execu	tive Summary	viii
List of	f Tables	xi
List o	f Figures	xii
Chapt	er One: Introduction	1
1.1 Ba	ackground	1
1.2 Or	rganization of the Report	2
Chapt	er Two: Instrumentation and Field Testing	3
2.1	Overview of DFI Study	3
2.2	Approach	4
2.3	Soil Investigation	4
2.4	Instrumentation Installation	9
2.5	Pile Construction	
2.6	Thermal Testing	
2.6.1	Probe Testing	14
2.6.2	Thermal Wire Testing	
2.7	Extraction and Physical Dimension Measurements	
Chant	er Three. Results of Testing and Analysis Methods	28
3.1	Measurement Systems	
3.2	Access Tube Material	
3.3	Measurement Location	
3.4	Analysis Techniques	
3.5	Grout Volume Determination	43
3.6	Effective Radius Estimates	46
Chapt	er Four: Conclusions and Recommendations	
4.1	Instrumentation Methods and Schemes	
4.2	Grout Volume Determination	49
4.3	Analysis of ACIP Pile Thermal Profiles	51
4.4	Summary	53
Refere	ences	54
Apper	ndix A – TIP Data	57
Apper	ndix B – TIP Effective Radius Profiles	65

Table of Contents

Appendix C – Boring Logs	78
Appendix D – Manual Grout Logs	99
Appendix E – Automated Monitoring Equipment (AME) Logs	107
Appendix F – Computed Radius Profiles from Automated Monitoring Equipment Data, Manual Grout Logs, and TIP Data	(AME)

List of Tables

Table 2.1 Te	st pile dimensions,	reinforcement,	and TIP instrumentation	9
--------------	---------------------	----------------	-------------------------	---

List of Figures

Figure 2.1 – Original proposed DFI auger-cast test pile layout (DFI, 2017)
Figure 2.2 - CPT sounding for initially proposed DFI test site (DFI, 2017)
Figure 2.3 - SPT boring log data for DFI test site (DFI, 2017)
Figure 2.4 - Final DFI auger-cast test pile layout (DFI, 2017)
Figure 2.5 - Bottom end view of reinforcement cages for 24-in piles C2 (left) and L2
(right) instrumented with thermal wires and access tubes for thermal probe
testing
Figure 2.6 - Top end of piles C1 (left) and L1 (right) reinforcement cages instrumented
with thermal wires11
Figure 2.7 - Pile E1 reinforcing cage with thermal wires attached
Figure 2.8 – 3-in center bars (left) and #11 center bars (right) instrumented with thermal
wires
Figure 2.9 - Automated reel and data collection system used for probe testing
Figure 2.10 - Overnight probe testing
Figure 2.11 - Probe testing pile C2 at approximately 24 hours after pile installation15
Figure 2.12 - Temperature profile for pile C2 at peak temperature taken via probe system.16
Figure 2.13 - Temperature profile for pile L2 at peak temperature taken via probe system. 17
Figure 2.14 - Pile C2 (left) and L2 (right) profiles from probe data taken on 6-hr intervals.18
Figure 2.15 - Pile E1 with thermal wires and attached TAP units
Figure 2.16 - Pile L1 with thermal wires and attached TAP units
Figure 2.17 - Pile C1 with thermal wires and attached TAP units
Figure 2.18 - Pile T1 with thermal wires and attached TAP unit
Figure 2.19 - Pile L2 with thermal wires and attached TAP units
Figure 2.20 - Pile C2 with thermal wires and attached TAP units
Figure 2.21 - Pile T2 with thermal wires and attached TAP unit
Figure 2.22 - Pile E1 center bar thermal wire data (left); cage wire date (right) at 15 hours25
Figure 2.23 - Temperature vs. time for pile E1 center bar wire from 10 ft below pile top.26
Figure 2.24 - Extracted pile shape from top to bottom (left to right and down)27
Figure 3.1 - Pile C2, probe in steel (orange) and wire (blue) measured thermal profiles for
each tube $1 - 4$ (left to right) near peak temperature
Figure 3.2 - Pile L2, probe in PVC (orange) and wire (blue) measured thermal profiles for
each tube $1 - 4$ (left to right) near peak temperature
Figure 3.3 - Pile C2 temperature vs. time from wire data (blue) and probe data (orange).30
Figure 3.4 - Pile E1 (left), L1 (center), and L2 (right) – average cage wire data (orange)
compared with center bar wire data (blue)
Figure 3.5 - Pile L1 (left) center bar temperature aligns with cage from 15 ft downward;
Pile L2 (right) from 20 ft downward
Figure 3.6 - Center and cage measurements for Pile C1 (left) and C2 (right)
Figure 3.7 - Center and cage measurements for Pile E1
Figure 3.8 - Typical temperature / radius plot or bell-curves (Part I, Figure 2.11; Mullins,
2012a)
Figure 3.9 - Relationship between cage position, shaft size, and temperature (Part I,
Figure 2.12; Mullins, 2012a)

Figure 3.10 – T-R relationship for a given cage position (Part I, Figure 2.13; Johnson,
2014)
Figure 3.11 - T-R relationships for varying foundation element sizes with both cage and
center measurement locations
Figure 3.12 - T-R relationships for smaller elements using Tsoil method
Figure 3.13 – 22-in diameter drilled shafts with center bar measurements analyzed using
Tzero (green) and Tsoil (blue) methods shown with post-extraction as-built
dimensions
Figure 3.14 - Radius computed from automated and manual grout log compared against
actual radius measured after extraction for Pile E1
Figure 3.15 - Effective radius from Tsoil method compared to actual radius of Pile E145
Figure 3.16 - Pile E1 effective radius determined from cage measurements and center bar
measurements compared to actual radius measured after extraction
Figure 4.1 - Radius predictions from grout volume measurements
Figure 4.2 - Intercept temperature as a function of measurement position
Figure 4.3 - Radial temperature distribution in 18-in ACIP pile (12 hr)
Figure 4.4 - Number 8 bar with weak and widely spaced centralizers over 10 ft (left)53
Figure A.1 - TIP wire data for pile E1, at cage location (left) and center bar location
(right)58
Figure A.2 - TIP wire data for piles T1 (left) and T2 (right), at center bar location59
Figure A.3 - TIP wire data for pile C1, at cage location (left) and center bar location
(right)60
Figure A.4 - TIP wire data for pile C2, at cage location (left) and center bar location
(right)61
Figure A.5 - TIP wire data for pile L1, at cage location (left) and center bar location
(right)62
Figure A.6 - TIP wire data for pile L2, at cage location (left) and center bar location
(right)63
Figure A.7 - TIP probe data for piles C2 (left) and L2 (right), at cage location64
Figure B.1 - Pile C1 effective radius from cage wire data, using T0 method (left) and
Tsoil method (right)
Figure B.2 - Pile C1 effective radius from center bar wire data using actual reported grout
volume (max) and reported volume grout less initial pump count (min) -10
method (left), I soil method (center), min/max from all combinations (right)6/
Figure B.3 - Pile C2 effective radius from cage wire data using reported grout volume
Over given partial length, 10 method (left), 1 soil method (right)
Figure B.4 - Pile C2 effective radius from center bar wire data using actual reported grout
volume (max) and reported volume grout less mitial pump count (min) -10 method (left). Tasil method (center), min/men from all combinations (right) (0)
Figure P. 5. Dile T1 offective redive from conter her wire date using actual reported grout
rigule B.3 - File I I effective fadius from center bar whe data using actual reported grout volume (max) and reported volume grout loss initial nump count (min) TO
would (max) and reported volume grout less minimized pump count (mm) -10 method (left). Tsoil method (center), min/max from all combinations (right) -70
Figure B.6. Dile T2 affective radius from conter her wire data using actual reported arout
volume (max) and reported volume grout less initial nume count (min) TO
would (max) and reported volume grout less minimized pump count (mm) -10 method (left). Tsoil method (conter), min/max from all combinations (right) -71
memou (ieit), 1 son memou (center), mm/max from an combinations (fight)/1

- Figure B.8 Pile L1 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right)......73
- Figure B.9 Pile L2 effective radius from cage wire data using reported grout volume over given partial length, T0 method (left), Tsoil method (right).74
- Figure B.10 Pile L2 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) T0 method (left), Tsoil method (center), min/max from all combinations (right)......75
- Figure B.11 Pile E1 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) T0 method (left), Tsoil method (center), min/max from all combinations (right)......76
- Figure B.12 Pile E1 effective radius from cage wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) T0 method (left), Tsoil method (center), min/max from all combinations (right)......77
- Figure F.1 Pile C1 computed radius from AME data, manual grout log, and TIP data...116
- Figure F.2 Pile C2 computed radius from AME data, manual grout log, and TIP data....117
- Figure F.3 Pile L1 computed radius from AME data, manual grout log, and TIP data...118
- Figure F.4 Pile L2 computed radius from AME data, manual grout log, and TIP data....119
- Figure F.5 Pile T1 computed radius from AME data, manual grout log, and TIP data....120
- Figure F.6 Pile T2 computed radius from AME data, manual grout log, and TIP data...121 Figure F.7 - Pile E1 computed radius from AME data, manual grout log, and TIP

data......122

Intentionally Left Blank

Chapter One: Introduction

1.1 Background

Augered Cast-In-Place (ACIP) piles are a subset of the larger category of cast-in-place deep foundations. In the U.S., cast-in-place deep foundations also include drilled shafts. As the name implies, cast-in-place deep foundation construction involves drilling a deep cylindrical hole in the ground and installing a fluid concrete or grout within the walls of the excavation wherein the walls are the "formwork." The dimensions of the as-built element are essentially defined by the shape taken on after drilling and the application of hydrostatic pressure from the fluid concrete or grout on the excavation walls.

Although similar at first glance, ACIP piles differ from drilled shafts both in construction processes and design capacity. Drilled shaft construction provides lateral stability to an open excavation via hydrostatic slurry pressure or mechanical bracing from a casing. Therein, the soil is methodically removed using repeated grabs, bites, or scoops with a relatively short drill tool (usually only 2 or 3 flights) or bucket. ACIP piles differ in that no slurry or casing is required to hold open the excavation; rather a continuous flight auger is used which maintains the stability and volume of the excavation via the soil that fills the auger flights. The sidewalls therefore push against the soil filled auger and are not free to collapse inward. The length of auger must extend to the deepest required tip elevation.

The net result of the significantly different auger configuration is that grout or concrete is pumped directly to the base of the excavation through the stem of the ACIP auger whereas drilled shafts place concrete through a separate and dedicated tremie pipe. Note that grout differs from concrete as it has no coarse aggregate and is easily pumped through smaller lines (e.g., drill stem). During grouting, the ACIP auger is extracted slowly enough such that the grout pumping rate can fill the entire theoretical volume plus a small over pour percentage. However, if the volume of the soil-laden auger is extracted faster than the inflowing grout it will result in a net negative pressure that will pull the soil walls in below the tip of the auger. As the auger tip reaches the surface it becomes more difficult to sustain grout pressure, and often, the contractor will reduce pumping rate to meet the theoretical volume per foot. Depending on the exact interaction between flow rate and extraction rate, severe necks in the cross-section and is a primary concern when using ACIP piles. Further, the most common configurations use a single central bar or a minimal reinforcing cage which have traditionally been too small to equip with integrity access tubes. This has made post-construction integrity evaluation limited.

The thermal integrity test has proven to be an effective method to evaluate the integrity of newly constructed drilled shafts (i.e., identifying anomalies, rebar cage alignment, concrete cover, etc.). However, very few auger-cast piles have been tested with this method as standard integrity access tubes are not typically installed. The disadvantage of auger-cast piles relative to piles or drilled shafts is that the final, as-built configuration of these foundation units is unknown. As such, their FDOT use has been limited to foundations for sound walls. If an improved quality

assessment tool is developed to ascertain the final, as-built configuration (size, depth, diameter, concrete cover, etc.) of auger-cast piles, their use in other applications can be reevaluated. It is the goal of this research to explore the use of the thermal integrity technology for auger-cast piles.

This report is the second of two in a two-part program to evaluate the effectiveness of thermal integrity profiling applications in auger-cast-in place piles. The first phase (*BDV25-977-09*, *Thermal Integrity Profiling for Augered Cast-In-Place Piles*) followed a traditional research approach including: (1) a literature review of thermal integrity profiling and heat of hydration concepts, (2) numerical modeling, (3) feasibility of wheel-less gyroscopic inclination measurements for thermal probe systems, (4) field testing and (5) reporting.

1.2 Organization of the Report

This second-phase study entailed three basic tasks: thermal instrumentation and testing of several full scale piles, evaluation of the field collected data, and reporting. These tasks are fully discussed in the ensuing chapters: Chapter 2 and Chapter 3 cover the first two tasks, respectively; Chapter 4 provides an overview, discusses the pros and cons of the various analysis algorithms and includes recommendations.

Chapter Two: Instrumentation and Field Testing

Implementation of the recently concluded research project (BDV25-977-09) findings was conducted in cooperation with a Deep Foundations Institute (DFI) study entitled "Verification of Installation and Performance of ACIP Piles." The overall scope of that study was multifaceted incorporating axial compression, pullout / tension, and lateral load tests as well as forms of verification testing. While verification can include a wide range of destructive and non-destructive test (NDT) methods, this program included on-board Automated Monitoring Equipment (AME), manual monitoring and field inspection, load testing and extraction of one of the installed piles (not used in load testing). NDT in the form of thermal integrity evaluation of all test piles formed the focus of this implementation plan.

2.1 Overview of DFI Study

The DFI study was planned to incorporate eighteen (18) auger-cast piles of various sizes of which seven (7) were slated for some form of testing. Figure 1 shows a plan view of the proposed pile layout at the test site in Okahumpka, Florida.

Figure 2.1 Original proposed DFI auger-cast test pile layout (DFI, 2017).

The remaining piles (shown in lighter grey) were reaction piles for the load frame(s) required to apply the axial or lateral loads. As shown, two piles were compression tests (C), two tension tests (T), two lateral load tests (L) and one was planned installed for the express purpose of being extracted (E). The extracted pile was to serve as a direct verification of the on-the-fly computer monitoring system which showed how much grout was placed at what depth and in that way made a prediction of the pile shape. This pile also served as the primary calibration tool for the thermal analysis options discussed as a result of the previous research project (discussed in Chapters 3 and 4).

2.2 Approach

A combination of thermal integrity methods were employed to evaluate the seven test piles. This allowed for a comparative analysis of results to assess the pros and cons of particular methods specific to their use in ACIP piles.

<u>Reinforcement:</u> Combinations of probe and wire methods were used in conjunction with both center bar and cage measurements. However, inherent with each load test type is a required (or preferred) reinforcement scheme. Tension tests required sufficient steel to resist up to 400-500 kips of anticipated load. This translated into a single 100-ksi threaded bar 3in in diameter. Compression load tests rely very little on the reinforcing scheme so more modest reinforcement schemes were used. The lateral load tests, by the nature of bending capacity performance (i.e., compression block vs. distance to tension steel), required a reinforcing cage sufficient to develop bending capacity without cracking at lower service load levels.

For the purpose of this implementation program, single bar reinforcing schemes were coupled with cage location measurements to compare the output results of each (and associated analysis algorithms). Comparisons of single wire versus four wire measurements were incorporated in five of the test piles. The extracted shaft incorporated a full cage with a center bar both of which extended full depth so that all analysis methods could be applied.

2.3 Soil Investigation

Prior to the onset of the instrumentation, construction and testing, subsurface site investigations were performed by the DFI team and showed loose soil conditions at depths below 55 ft. Figures 2.2 and 2.3 show a CPT sounding and SPT boring log, respectively. Complete details are included in Appendix E (DFI, 2017).

Figure 2.2 CPT sounding for initially proposed DFI test site (DFI, 2017).

PROJE	CT NO.	N/A Ka humat	NAME Auger Cast	Pile R	<u>e Searcie</u>	OUNTY	Lake	DISTRICT 5
ROAD	NUMBER	an charafty b	I I I I I I I I I I I I I I I I I I I			RUPEA	CE ELEVATION	_ OECTION
EQUIPI DATE S		€ <u>Cm</u> e 9/12	2 75 R	1G NO. 2 9/17 /2	4600 ·		BORING	NO. # (L1) ce/kyle
WATER	TABLE:	0 HR	24 HRS. 131 (CONAPSE)	C/	JGER, WA	SHED, PE	RILLING MUD	ARY.~
SAMPL	ECONDI		GOOD LOST	°A'A ∭SBC S S: S	uger Plit Bai Helby 1	<u>tes</u> Rrel 'Ube	TS: W.C.: WA T: TOF V: IN-S	TER CONTENT (%) RVANE (TSF) SITU VANE TEST (TSF)
			CORE SAMPLE	RC: R	осксо	RE	_SIZE	
ELEV. (FT.)	DEPTH (FT.)	S.P.T. BLOWS	MATERIAL DESCRIPTION	CON.	NO.	REC.	TESTS	REMARKS
	ι <u> </u>	1	Dark Brown to Black Sand	//#		50	SB _	_
	z — 3 _	2243	Brown Sand	117	2	50	SB =	
	L] <u> </u>	227	Light Brown Sand	/#	_3	50	SB =	
	5	2024	Sand	(† /4	4	50	SB _	
	7_	printe	Sand W/ Trace of crange		_5	60	SB =	_
	9-	4 4	Same		6	60	SB =	
	10-	N 4 -	Jame	1 <u>174</u>		70	SB	
	12_				_		-	-
	13-			E	_		Ξ	
_	15	23	Park Brown to	1/H	Q	50	SB -	
	17-	4	Black Salmon	1/14	-0	20		_
	18 -				_			
	26			-			_	

Figure 2.3 SPT boring log data for DFI test site (DFI, 2017).

Figure 2.3 (continued) SPT boring log data for DFI test site (DFI, 2017).

Based on the findings of the site investigation and logistics, the test program was re-oriented 90 degrees counterclockwise as shown in Figure 2.4 and the final pile size and reinforcement scheme was established as shown in Table 2.1.

Figure 2.4 Final DFI augercast test pile layout (DFI, 2017).

	D	(in) Length (ft)	Cage Length (ft)	Full	Access Tubes	TIP Wires		TID
Pile	(in)			Length Center Bar		Partial Length	Full Length	Probe
E1	18	40	40	3" threaded		4	1	No
T1	18	60		3" threaded			1	No
C1	18	60	35	#11		4	1	No
L1	18	40	35	#11		4	1	No
T2	24	60		3" threaded			1	No
C2	24	60	35	#11	4 (Steel)	4	1	Partial Length
L2	24	40	35	#11	4 (PVC)	4	1	Partial Length

Table 2.1. Test pile dimensions, reinforcement, and TIP instrumentation.

2.4 Instrumentation Installation

The reinforcing scheme in each pile (Table 2.1) defined how each pile reinforcement element was instrumented: plastic or steel access tubes and quantity and length of thermal wires. Upon arrival on-site, all cages were fully assembled and ready for installation of instrumentation. Instrumentation installation involved attaching access tubes and thermal wires and was performed in two visits due to hurricane warnings and evacuations affecting central and east Florida (Oct. 5 and 26, 2016).

Piles C2 and L2 were equipped with both access tubes and thermal wires. While the cages were not intended to extend full depth, the access tubes were slightly extended 1 ft below the bottom of cage for some additional information as there would be no interference with the bottom of the excavation. Access tubes were first installed to prevent damage to wires if installed before access tubes. Tubes were tied with steel tie wire at 2-ft intervals to provide a secure attachment. Wires were tied to the access tubes such that the sensors were all positioned 90 degrees counterclockwise from the inward direction of each tube. This aligned the radial distance from the center of pile to each wire sensor with the centerline distance of each access tube.

Piles C1, L2, and E1 were instrumented with only thermal wires where the same 90 degree counterclockwise orientation of the sensors was used relative to the vertical reinforcing steel bars. Sensors were secured with plastic wire ties where one tie was placed on the upper and lower side of the sensors (i.e., two ties per sensor or foot of wire length). Sensors were spaced at 1-ft intervals. The 24-in piles had twelve No. 8 bars and the 18-in piles had eight No. 8 bars,

which made the installation of four wires conveniently spaced on multiples three bars for the 24in piles and two bars for the 18-in piles. Excess wire length was bundled and attached to either the top of the access tubes or reinforcing bars (Figure 2.5). Figures 2.5 - 2.8 show each of the five reinforcing cages and the center bars that were instrumented with a single wire similarly secured with two ties per sensor.

Figure 2.5 Bottom end view of reinforcement cages for 24-in piles C2 (left) and L2 (right) instrumented with thermal wires and access tubes for thermal probe testing.

Figure 2.6 Top end of piles C1 (left) and L1 (right) reinforcement cages instrumented with thermal wires.

Figure 2.7 Pile E1 reinforcing cage with thermal wires attached.

Figure 2.8 3-in center bars (left) and #11 center bars (right) instrumented with thermal wires.

2.5 Pile Construction

While not the focus of this report, the construction of each test pile followed conventional ACIP pile construction practice where a full length continuous flight auger was slowly advanced into the ground while constantly spinning until the target depth of pile was reached. Grout was then pumped through the hollow stem central portion of the auger while slowly extracting. Several pump strokes of grout were initially placed prior to auger extraction. During extraction, the pump flow rate and extraction rate were kept as constant as possible to ensure uniform distribution of the grout. Upon complete extraction of the auger, the reinforcing steel was lowered down into the still-fluid grout. For piles with both center bars and cages, the center bar was installed first followed by the surrounding cage.

Pile installation records and the full construction process are reported elsewhere (DFI, 2017). However, selected components of the report are included in Appendices C, D, and E.

2.6 Thermal Testing

With two types of thermal systems installed on the reinforcing cages, two simultaneous testing efforts resulted using probe and thermal wire methods.

2.6.1 Probe Testing

Probe testing is usually only performed once, at a time that is near the peak temperature (ASTM 2014). At that time, the quality of the data is immediately evaluated by the testing engineer (or technician). If all profiles are clear and the data meaningful, then no more testing is required. However, for this study probe testing was performed on 6-hr intervals starting 6 hours after the piles were cast and continued up to 24 hours after casting. Each tube was profiled twice during each 6-hr interval/visit. Figures 2.9 - 2.11 show probe testing being performed at various stages of the curing/hydration process. For these tests an automated, reel-type system was used which frees the testing engineer to perform multiple field functions at once.

Figure 2.9 Automated reel and data collection system used for probe testing.

Figure 2.10 Overnight probe testing.

Figure 2.11 Probe testing pile C2 at approximately 24 hours after pile installation.

Per ASTM D7949, probe testing was performed by taking temperature measurements as the probe descended at a rate of 0.3 to 0.5 ft/sec. The initial position of the infrared viewing windows in the probe was always well above the top of pile to ensure capturing the transition from the cooler air environment to the warmer curing pile concrete. This clearly demarcates the top of pile location and serves as a reference for pile length. In this case access tubes were only partial length, so no analogous bottom of pile transition could be recorded. Figures 2.12 and 2.13 show thermal profiles from each of the piles that were equipped with access tubes for thermal probe testing.

Figure 2.14 shows the average temperature profiles from one of the piles over the duration of testing. Data from all tests and profiles are included in Appendix A.

Figure 2.12 Temperature profile for pile C2 at peak temperature taken via probe system.

Figure 2.13 Temperature profile for pile L2 at peak temperature taken via probe system.

Figure 2.14 Pile C2 (left) and L2 (right) profiles from probe data taken on 6-hr intervals.

2.6.2 Thermal Wire Testing

Thermal wire testing has the inherent advantage to the field technician in that no planning is necessary to ensure thermal testing aligns with the anticipated peak temperature timeframe. Rather, data collectors (TAP units / Thermal Access Ports) are attached to the wires immediately after casting or as soon as access is granted and data is continuously taken up to and beyond the peak temperature occurrence. The disadvantage is that the quality of the data is not known until after retrieval of the TAP units and the data is downloaded. Figures 2.15 - 2.21 show the TAP units attached to each of the test piles.

Figure 2.15 Pile E1 with thermal wires and attached TAP units.

Figure 2.16 Pile L1 with thermal wires and attached TAP units.

Figure 2.17 Pile C1 with thermal wires and attached TAP units.

Figure 2.18 Pile T1 with thermal wires and attached TAP unit.

Figure 2.19 Pile L2 with thermal wires and attached TAP units.

Figure 2.20 Pile C2 with thermal wires and attached TAP units.

Figure 2.21 Pile T2 with thermal wires and attached TAP unit.

Due to the continuous data collection feature of thermal wire data, not only can thermal profiles be collected, but also time vs temperature relationships can be derived. Figures 2.22 and 2.23 show examples of thermal wire data collected from one of the test piles and the associated temperature trace from a selected elevation, respectively. All thermal profiles from wires and temperature traces from each pile are included in Appendix A.

Figure 2.22 Pile E1 center bar thermal wire data (left); cage wire date (right) at 15 hours.

Figure 2.23 Temperature vs. time for pile E1 center bar wire from 10 ft below pile top.

2.7 Extraction and Physical Dimension Measurements

Only one of the test piles was extracted for evaluation of as-built dimensions. Four relief holes were drilled around pile E1 to reduce side shear, and the pile was removed using the central threaded bar. The pile was cleaned and measured via manual measurements. Two different teams measured the circumference on 1-ft intervals down the pile. These measurements were then converted to the equivalent diameter, which assumed the pile was circular in section and that there were no significant voids or bulges. Using a large-scale caliper, direct measurements of diameter were taken at 90 degree locations down the length of the pile (i.e., two measurements per depth location). The results of the actual diameter were then used to assess the true as-placed volume of the pile and then compared to the predicted volume per pump strokes from the automated installation recorder. These data are presented and discussed in Chapter 3. Figure 2.24 shows the extracted pile marked on 1-ft intervals from top to bottom.

Figure 2.24 Extracted pile shape from top to bottom (left to right and down).

Chapter Three: Results of Testing and Analysis Methods

Both thermal probe and wire systems were used to collect data over an extended period of time. The evaluation of the data focused on: measurement system (i.e., probe or wire), access tube material, measurement location (i.e., center vs cage), analysis techniques, grout volume determination, and required input parameters for thermal analyses when converting temperature to radius (or diameter). Note that radius predictions apply to local cage position measurements with multiple locations within the cross-section; single-location, center bar measurements can only produce an average diameter for the pile at that depth. Throughout this chapter, cage based radii predictions are compared to average radii (not diameter) from center bar data for clarity.

3.1 Measurement Systems

The choice of whether to use probe or wire systems revolves largely around the owner's (or contractor) testing strategies or philosophy. For sites where other test methods will be used that require access tubes, the probe system adds no additional cage preparation time as access tubes will already be available. However, a testing engineer or technician must be scheduled to arrive and perform probe profiling near the peak temperature (to ensure the highest possible definition of shaft dimensions is obtained). Thermal wire systems require similar cage preparation times when compared to access tube installation but if dual access tubes and wires are used, both the time of installation and overall system costs increase. Ideally, from a cost standpoint, replacing tubes with thermal wires would be about the same. Scheduling for wire systems has the advantage over probe systems as continuous data collection ensures the peak temperature profile is captured. So, in certain cases the thermal testing engineer or technician may not need to visit the site at all (when the contractor team has developed a level of installation and operation competence). Increased care should be observed when installing any wire-based instrumentation. However, even under close supervision of the wire installation and construction processes, the wires are vulnerable to damage. Likewise, data may not be collected if the storage units are not properly maintained (kept charged and safe from vandalism) or when wires are cut.

For this project, piles C2 and L2 where equipped with both access tubes and thermal wires. For both piles, four access tubes were installed where wires were attached to each tube such that they would lie along the same radial position as the center of the tubes (i.e. same radial distance from center). Both piles also had a center bar that was only instrumented with a wire so no direct comparison between center access tubes and wires could be made. Figures 3.1 and 3.2 show the thermal profiles for piles C2 and L2, respectively, measured using both the probe and wire methods. Recall the wires were tied along the side of the access tubes such that the wire position radius would be the same as the center of the tubes relative to the center of the cage. In some of the wire profiles sensor failures occurred; wire 1 on pile C2 experienced failures for all nodes below 5 ft, and wire 3 experienced failures for nodes at 32 and 33 ft.

Figure 3.1 Pile C2, probe in steel (orange) and wire (blue) measured thermal profiles for each tube 1 - 4 (left to right) near peak temperature.

Figure 3.2 Pile L2, probe in PVC (orange) and wire (blue) measured thermal profiles for each tube 1 - 4 (left to right) near peak temperature.

While not usually performed via probe testing, thermal wire options provide temperature versus time information which is helpful in assessing the cementation material performance. For this project, however, both probe and wire systems were used to collect data over an extended period of time. The results indicated that both systems showed close agreement. Figure 3.3 shows an example temperature versus time response for pile C2 at a depth of 30 feet for both systems.

Figure 3.3 Pile C2 temperature vs. time from wire data (blue) and probe data (orange).

While Figure 3.3 shows the temperature versus time response at a depth of 30 ft, this type of plot can be produced for any depth where a measurement was taken. The most important aspect of these curves is the ability to denote the presence of a typical hydration response and if retarders are used, the performance of the admixture can be verified.

3.2 Access Tube Material

Probe testing can be performed in any preformed hole usually provided via plastic or metal access tubes. Whether to use plastic or metal is again an owner decision. Western state DOTs tend to be more willing to use PVC and cite no adverse effects. For those agencies added benefits from using PVC include less signal attenuation from gamma radiation based systems and increased ease in jetting out pockets of debris or anomalous formations. Southeastern state DOTs have a different experience base and prefer the use of steel access tubes. Nevertheless, both materials have about the same incidence of debonding failures which suggests other variables such as contractor practices may play a significant role. This is not the focus of this access tube material comparison.

Side-by-side testing of probe in steel access tubes and wire systems for larger drilled shafts has shown no adverse effects despite weather (time of year, cold or hot). However, for the smaller diameter piles tested here, there was a clear indication that the cooler fall weather influenced the upper portions of the probe measurements. Probe testing was performed using steel access tubes in pile C2 (Figure 3.1 above) and PVC access tubes in pile L2 (Figure 3.2). Both piles showed general agreement between the two methods except for slight discrepancies in the upper portion of pile C2 (steel tubes) where the probe measured slightly lower temperatures than the wires. This is not surprising given the surface area of four steel tubes compared to the small mass of energy-producing cement and the ability of the 2-ft exposed steel tubes to dissipate heat energy to the air. Recall early mass concrete assessments compared the dissipation shaft surface area to the overall shaft volume. Similarly, the surface area of the steel tubes increases the ability to locally lose heat to the surroundings. The low diffusivity PVC showed no effects. When only thermal integrity testing is used for a given site, installation of dry PVC tubes allows the contractor to skip the water-filling process, thereby reducing de-watering testing time, and lowering the overall cost of integrity testing.

3.3 Measurement Location

Five of the seven test piles were instrumented with both center bar and cage position temperature systems (two of which also included access tubes on the cage as noted above). Based on normal temperature distributions within a cylindrical hydrating foundation element, it is well understood that the centermost positions will be warmer than more peripheral positions closer to the surrounding cooler soil. This is especially true for smaller diameter ACIP piles, and for Pile E2 this phenomenon was clearly demonstrated where the center bar temperatures were consistently and uniformly warmer than the cage temperatures (Figure 3.4). However, for several other piles the average of cage-located measurements was consistently cooler near the surface (normal), but came to the same temperature as the center bar at depth. This showed that the center bar was not centered.

Piles C1 and C2 could not be used to produce reliable average profiles due to missing data from malfunctioning wire sensors; those comparative graphs were not prepared. However, the same basic trends can be seen in Figures A.3 and A.4 where the center bar was generally warmer than cage position measurements (Appendix A).

Figure 3.4 Pile E1 (left), L1 (center), and L2 (right) – average cage wire data (orange) compared with center bar wire data (blue).

Previous studies and projects have shown the value of at least four cage based temperature measurements in providing an indication of cage offset from concentricity with the excavation. For ACIP piles, the small cross section and construction process almost completely removes the possibility of full length cages for the proper assessment of the cage eccentricity and pile integrity. As a result, use of instrumented single center bars (with wires) has become widespread. The downside is the loss of valuable information. However, in the high bending moment regions beneath the pile cap, cages can be used even for small piles (e.g., 12-in cages used in this study).

Using the individual cage position temperature measurements the cage offset was qualitatively assessed to ascertain the relative location of the center bar. Figure 3.5 shows the complete profiles for piles L1 and L2 and indicates the center bar, which was well centered at the top of pile, gradually aligned with the cage at a depth of 15 and 20 ft, respectively, and was adjacent to the cage from that point to greater depths.

For Pile L1, the average cage measurement profile indicates a bulge from 15 to 25 ft. The center bar measurements reflect the same general shape, however, at one point the cage temperature exceeded the center bar temperature indicating that in the bulge region, the cage was positioned to the north and pushed the center bar out of the higher temperature core. Wire 3 (southern-most side of cage) at that depth was then the most centered sensor string. Below the bulge the cage

measurements gradually converge to the same temperature (at 30 ft) indicating the cage is then centered. However, the center bar temperature at that depth is the same as the cage from that depth downward indicating the center bar is nestled into the cage (same radial position). Given a nominal cage OD of 12 in (ID of 11 in) and that the bar temperature is the same as the cage position measurements, the center bar can be located approximately 5.5 in off-center (the distance from the center of cage to the center of the main vertical reinforcement. *Note: where it seems unlikely to have the center bar colder than the cage at a given depth, it is actually reasonable provided that the average of all cage measurements is still cooler than the center bar measurement.*

For Pile L2, like Pile L1, the cage appears to have moved laterally where Wires 2 and 3 are warmer than the other cage temperatures and are the same as the center bar at 20 ft. At a depth of 30 ft all four cage wires are the same temperature indicating a perfectly centered cage, but because the center bar shares the same temperature as all cage temperatures, the center bar is touching the cage between Wires 2 and 3. With a nominal cage OD of 18 in (ID of 17 in) and given the bar temperature is the same as the cage position measurements, the center bar can be located 7.5 in off-center. *Note: wires were tied to the side of 2-in OD access tubes which slightly changed the radial position relative to L1 where wires were tied to the side of No. 8 main bars.*

The same review was applied to the remaining piles: C1, C2, and E1:

- Pile C1, the center bar and Wire 3 have the same temperature at 35 ft, so the center bar is part of the cage at that depth (Figure 3.6, left); cage offset cannot be evaluated due to missing opposite side measurements within the cage.
- Pile C2, the center bar has the same temperature as Wires 3 and 4 again showing the center bar to be nestled within the cage (Figures 3.6, right); as the average of Wires 2 and 4 (125 and 130°F at 34 ft) is similar to the center bar, the center bar has moved closer to Wire 4, yet the cage, qualitatively, is fairly well centered.
- Pile E1, the cage is well centered throughout with a moderate amount of offset at a depth of 30 ft (115 to 118°F variation). The average of all cage measurements is consistently several degrees less than the center bar indicating the bar is centered within the excavation and the cage movement into the higher temperature core explains why Wire 2 is almost as warm as the center bar. At the very bottom of the pile, the center bar becomes cooler than Wire 4 indicating center bar deviation from center.

Overall, the 18-in piles can be quickly identified relative to the 24-in piles due to the normal cage temperature (115°F for 18-in or 140°F for 24-in) and center bar temperatures (120°F and 150°F, respectively) which were 25 to 30°F cooler.

Figure 3.5 Pile L1 (left) center bar temperature aligns with cage from 15ft downward; Pile L2 (right) from 20ft downward.

Figure 3.6 Center and cage measurements for Pile C1 (left) and C2 (right).

Figure 3.7 Center and cage measurements for Pile E1.

3.4 Analysis Techniques

Analysis of thermal profiles can be qualitative or quantitative whereby field observations of thermal profiles can quickly reveal the overall pile (or shaft) quality. As noted in Section 3.3, simple observations of cage-based measurements indicate the presence or absence of cage offsets and the basic shape of the foundation element. These reviews identify the limits of the concrete (or grout) in the form of length, and the relative temperature differences can be explained by changes in local radius relative to the rest of the profile (discussed above).

Quantitative evaluations can employ numerical modeling or simple concrete (or grout) volume distribution where the total placed volume is converted to local pile or shaft radii along the shaft length proportional to local temperature. Often, the total placed volume is known, but the final resting place and shape of the concrete mass is not. Thermal profiles locate the concrete. In essence, the average temperature profile is integrated over depth and the total "area under the curve" is equated to the total placed volume. This makes a simplistic assumption that a linear temperature-to-radius relationship can represent the actual shape of the temperature-to-radius equation which is best represented by an inverse hyperbolic tangent function. The hyperbolic function requires numerical modeling to precisely define, but input parameters for hydrating

cementitious materials are at best estimates. Day to day changes in bulk materials can change the as-placed energy production and temperature rise. Therefore, models must be signal matched to field data until the input parameter selections produce the correct temperature profile.

Alternatively, simple field calibration of the hydration energy can be used where the average overall shaft or pile temperature is equated to the average shaft or pile radius. This is the method used for drilled shafts, but cage measurements on a shaft are considerably farther away from the center than in ACIP piles. This means that shaft cage measurements are in a strongly linear portion of the temperature / radius, bell curve (Figure 3.8).

Figure 3.8 Typical temperature / radius plot or bell-curves (Part I, Figure 2.11; Mullins, 2012a).

The shape of the bell curve is similar to the temperature reduction that occurs at the top and bottom of the shaft (or pile) as the temperature profile transitions to the air or soil, respectively. The effect of radius increase or decreases also follows the same trends as shown in Figures 3.9 and 3.10. Figure 3.9 shows the overall effect of all shaft sizes and measurement locations, while Figure 3.10 shows a shaft specific temperature / radius (T-R) relationship where the measurement position within the foundation element is fixed dependent on the cage radius relative to the shaft radius. In both figures, the dashed black lines denote the T-R relationship at the location of the cage which is 6 in smaller than the shaft (which is the typical FDOT cover requirement). In other states, a smaller cover may be permissible or prescribed based on the shaft diameter.

Figure 3.9 Relationship between cage position, shaft size, and temperature (Part I, Figure 2.12; Mullins, 2012a)

Figure 3.10 T – R relationship for a given cage position (Part I, Figure 2.13; Johnson, 2014).

Knowing the actual relationship, simplistic linear T-R approximations have been employed to estimate the local shaft radius within the linear portion of the true hyperbolic T-R curve. For shafts this approach is known as the T_{zero} method. Therein, a line is defined using two points in the temperature / radius coordinate space: (0,0) and (T_{avg} , R_{avg}). Modeling has shown that this

approximation is valid for changes in radius up to 6 in. For changes in radius larger than 6 in, the T_{zero} method tends to under-predict the magnitude of variation. Nevertheless, as shafts can be rejected on the basis of only 1.5-in reductions, inaccuracies at radial reductions exceeding 6 in are not really an issue. In all cases, the method was designed to never over-predict the severity of actual radial reductions to eliminate false positives of problematic conditions. However, for shaft sizes greater than about 5 ft in diameter, the T_{zero} method is quite precise. For smaller diameters (3 to 5 ft), it slightly under-predicts the magnitude of shaft variation for a given change in temperature (i.e., bulges are larger than predicted and necks are smaller).

In the Part I report, center bar temperature measurements of ACIP piles were shown to be only mildly affected by diameter changes using the T_{soil} method and drastically underestimated true radial variations. Several alternate analysis methods were discussed for small piles with only center bar measurements; one did not require numerical modeling and is referred to in this report as the T_{soil} method. This method uses a modified version of the T_{zero} method where the linear T-R relationship is again defined using two points but the zero radius temperature value is defined by the local at-depth soil temperature: (T_{soil} ,0) and (T_{avg} , R_{avg}). As an example, Figure 3.11 shows the modeled inverse hyperbolic tangent T-R relationships for 2, 4, 8 and 12-ft diameter elements at the time of peak temperature. Recall, the T-R relationship is dependent on the location of measurement; the center of element and cage positions are shown as grey and black curves, respectively. The cage position relationships are fitted with the T_{zero} linear approximation passing through the T_{avg} , R_{avg} point; the center of pile curves are fitted with the best linear relationship to represent the linear portion nearest the T_{avg} , R_{avg} point. All elements were modeled with ACIP pile grout for comparison. The grout or concrete composition only affects the adiabatic core temperature and the rate at which it is achieved; it does not affect the hyperbolic T-R shape.

Figure 3.11 T-R relationships for varying foundation element sizes with both cage and center measurement locations.

Interestingly, as the diameter of the element decreases and approaches 2 ft, the average temperature from the cage and from the center bar become the similar due to close proximity (shown as light and dark red diamonds, respectively). This is due to the cover requirement that makes the cage quite small relative to the element diameter. Also, the best-fit T-intercept (x-axis intercept) for center location measurement ranges from 200°F for 12-ft diameter to T_{soil} for 2-ft diameter. This is expected as elements of diameter greater than about 5 ft tend to plateau at the adiabatic temperature within the core, so a linearization produces a near flat and over-sensitive T-R relationship. When the same approach is applied to smaller diameter ACIP-sized elements, the T-R relationship for both the cage and center bar locations are well represented by the T_{soil} intercept (Figure 3.12).

Figure 3.12 T-R relationships for smaller elements using T_{soil} method.

In a previous study, twelve 22-in diameter elements were instrumented with center bar measurements and then extracted for physical measurements (Mullins, 2012b; Mullins and Winters, 2014). At that time, the T_{zero} method was shown to be ineffective so advanced modeling techniques were used. Figure 3.13 shows the data from two of these shafts now regressed using the T_{soil} approach.

Figure 3.13 22-in diameter drilled shafts with center bar measurements analyzed using T_{zero} (green) and T_{soil} (blue) methods shown with post-extraction as-built dimensions.

The measured step in each shaft (black dotted lines) was caused by an oversized surface casing and resulted in the shaft diameter transitioning quickly to the smaller auger diameter. Similar to end of pile transitions to air or soil, sudden steps in the shaft appear in the temperature profiles as inverse hyperbolic tangent transitions from warmer to cooler (or vice versa). For top and toe profiles these transitions are adjusted to reflect the proximity to the known end of pile effects. For mid shaft steps no adjustments are presently employed. Review of this data reveals the possible need for this type of algorithm although the use would need to be selectively used. *Note: similar mid shaft profile transitions can occur from drastic changes in the surrounding environment (i.e. cased shaft extending from soil through water to air). In those cases the effects of the surroundings are removed; in this case the effect of transition would be emphasized.*

When considering changes in shaft diameter due to casing, it is clear that accurate field records are critical to ensure the proper vertical alignment of sensors. In the case of the Figure 3.13 left, the actual change in diameter aligns reasonably well with the recorded thermal transition. In Figure 3.13 right, the two transitions are offset by what must have been an erroneous field notation locating the top most sensors (datum). For both cases, however, the T_{soil} method

correctly captured the magnitude of radius change associated with a significant dimensional variation. T_{zero} did not.

3.5 Grout Volume Determination

Before extraction of the auger several pump strokes are applied which build pressure in the system (soil and all lines) and establish a concrete head similar to tremie placed concrete. Traditionally, this volume of grout is discounted when assessing the actual placed volume. The auger is then extracted while continuously pumping grout and hence a volume/length of pile relationship can be used to estimate the local diameter (or radius). Once near the surface, the pressurized grout reaches the surface before the full extraction of the auger which is noted in the field records as the depth when grout return was observed at the surface. Thereafter, grout volume placed could be used to account for further soil expansion, replacement of the auger volume or overflow at the surface. Discounting this volume completely is not reasonable but a portion should be. These records can be collected manually (on 5-ft intervals or similar) or via automated on-board data collection systems (noted here as AME records).

Considering Pile E1, Figure 3.14 shows the predicted radius from manual and AME records where no attempt to correct for losses was imposed. At the bottom of pile, the initial pump strokes are registered as a significantly oversized pile when compared to the actual measured dimensions after extraction. Three different sets of manual measurements were taken to document the as-built dimensions; all are shown as the basis of comparison. Several aspects make the actual placed volume and distribution difficult: tendency of grout under pressure to flow up the sides of the soil filled auger, initial pump count to fill all lines and achieve pressure head, and volume lost at surface after grout return. Using several approaches the as-built pile shapes were estimated/computed for all other piles and presented in Appendix B.

The T-R analysis relies on an accurate estimate of the total volume of grout/concrete (and steel) that comprises the as-built pile. For drilled shafts, this is usually determined from the number of trucks used to pour a shaft (i.e., 9-10 CY increments). With ACIP pile construction however, pump strokes are counted and tallied over a given length of auger withdrawal (e.g., every 5 ft). Additionally, the use of automated monitoring equipment allows grout flow rate and auger withdrawal rate (along with other parameters) to be monitored continuously and thereby compute grout volumes at even higher resolution (smaller depth increments). The deceiving allure of this is that the exact distribution of grout should be able to be determined by combining these measurements throughout the entire auger withdrawal. Considering the Figure 3.14 results it is difficult to decide the volume to be discounted when the actual pile shape (and associated volume) is not available.

Using three possible placed volume values corresponding to total volume placed, total minus initial pump strokes and the actual volume from physical measurements of Pile E1, the thermal data collected was converted to radius profiles (Figure 3.15) using the T_{soil} method. The first two options overestimated the pile radius by 2 and 1 in, respectively. It is apparent that an additional amount of grout volume must be removed (the true waste), but the rationale for selecting this value is not apparent. Using the true volume from the measured pile dimensions, the effective radius profiles closely resemble the actual shape of the pile. The radii determined from manual or

AME-data largely did not align with the actual shape (Figure 3.14); but is understood that this measurement is not intended to predict the radial dimension as function of depth, rather it provides a mechanism to monitor grout volume vs extraction rate ratios consistent with good practice. For thermal analyses, actual in-hole grout volume is necessary.

Figure 3.14 Radius computed from automated and manual grout log compared against actual radius measured after extraction for Pile E1.

Figure 3.15 Effective radius from T_{soil} method compared to actual radius of Pile E1.

Using the information obtained from the Pile E1 analysis, the effective radius profiles for all other piles were prepared using both the reported grout volume and that minus initial pump count – Appendix B. The following observations were made:

- Piles L1, T1, L2, C2, T2 showed drastic radius reduction around 30 ft
- Pile C2 mid-pile step corroborated by grout log (and AME)
- Subtraction of initial pump count on pile E1 resulted in 1 in larger radius than actual, but that pile had the deepest auger depth upon grout return.

- For other piles which had shallower depths at grout return, subtraction of initial pump count resulted in radii almost equal to that of auger size in the bottom portion, as all shafts except E1 and C1 exhibited significant mid-pile radius reductions.
- Only piles T2 and L2 had resulting radii less than the auger dimension (~1 to 1.5 inches less) in the bottom portion. For pile L2, this could be explained by AME records which show a relatively fast withdrawal rate near the base, without a corresponding increase in grout flow rate.
- For piles with only center bar measurements any temperature reduction trend (which could be due to misalignment) will affect the grout volume distribution (i.e., high temperature regions will overestimate radius and lower temperature regions will underestimate the radius).

3.6 Effective Radius Estimates

The effective radius was shown to be best estimated using the T_{soil} method and using both center bar and cage location measurement. For cage location temperature measurements, the T-R relationship is based on the average temperature profile and the average of that profile is compared to the average radius. The overall average cage temperature should be less than the average center bar temperature if the center bar is truly centered. This was the case for Pile E1. Therefore, the R/T slope (Eqn 3.1) is different for the two measurement locations although both locations were shown to be best represented by the T_{soil} method.

$$R_{effective} = \frac{R_{avg}}{(T_{avg} - T_{soil})} T_{measured} + \frac{R_{avg}T_{soil}}{T_{soil} - T_{avg}}$$
Eqn. (3.1)

The net effect is the higher measured temperature at the center is balanced with a lower R/T slope compared to the cage R/T value such that temperature measurements from both locations produce the same effective radius profile. This is also true in shaft evaluations where two shafts of the same diameter that have different cage diameters / cover criteria; both produce the same effective radius profile using a shaft and time specific R/T value.

Using only the true volume (as determined from post-extraction measurements), the effective radius profiles were estimated for both thermal measurement locations from Pile E1, which showed close agreement with the post-extraction as-built pile measurements (Figure 3.16). The magnitude of variation between the two estimated shapes is on the same order as that observed by different physical measurements conducted by two different teams (DFI contractor and USF researchers) or by using two different measurement methods (diameter from taped circumference vs localized diameter from calipers).

Figure 3.16 Pile E1 effective radius determined from cage measurements and center bar measurements compared to actual radius measured after extraction.

Chapter Four: Conclusions and Recommendations

This study was the second in a two-part research program focused on assessing the feasibility of using thermal integrity profiling for ACIP piles. This was made possible by coordinating with the Deep Foundations Institute ACIP pile project to demonstrate the strength of piles in various loading conditions (i.e., tension, compression and lateral loads). In all, seven test piles were equipped with thermal integrity assessment devices. Both probe and thermal wire systems were used to collect data over an extended period of time, thereby providing a means to compare instrumentation methods, schemes and analysis techniques. One of the seven piles was extracted to assess the validity of on-site inspection methods which was also used as a control for the thermal analysis comparison.

4.1 Instrumentation Methods and Schemes

Instrumentation, defined by the installation of sensors or measuring systems, for thermal integrity methods is dependent on the reinforcing steel configuration. Probe systems require access tubes, wire systems require a cage on which to attach the sensor strings. Commonly used single bar reinforcement in ACIP piles is not conducive to probe systems unless hollow reinforcement is used (a relatively new development). Regardless of method, both probe and wire systems showed close agreement with each other in this study.

Use of steel access tubes in small piles was shown to influence the near surface probe measurements in the small piles when in cool weather (e.g., 70°F). When used in larger diameter foundations elements (e.g., 3-ft diameter or larger), no similar effects have been noted. The temperature measurements in PVC access tubes were unaffected.

Both center bar and cage position measurements were shown to be sensitive to the as-built radius variations for the small 18 and 24-in piles used for this study. Based on numerical modeling, center bar measurements are not a good option for piles (or shafts) large than 3 ft in diameter. This is due to the loss of sensitivity to peripheral changes in dimension.

Center bar installation can result in off-center placement which may or may not be detected via thermal wires. Use of cage based measurements (4 preferred) allows for full assessment of pile size and cage offset. While centralizers were used, mixed results were found in this study where both the center bar and cage showed centered and off-center results (Table 4.1). The degree of center bar eccentricity was such that full pile size determination could not be made by traditional temperature to radius conversions. Some correction for misalignment may be possible (discussed later). For this project, center bars (and cages) were well centered near the top of a pile where visual inspection could be used to adjust the final position. Table 4.1 provides a summary of the center bar and cage movements. For cages, the direction of movement can be determined; for

center bars alone direction cannot be determined; when both center bar and cages are used then both movements can be determined.

Pile	Center Bar Alignment	Cage Alignment
L1(18in)	Centered from 0-15ft Touching cage from 30-35ft on west side (up to 5in movement)	Centered from 0-15ft Bulge on south side from 15-22ft causes abnormal alignment determinations Centered from 23-35ft
L2 (24in)	Centered from 0-25ft Touching south east edge of cage from 20- 35ft (up to 5in movement)	Centered from 0-15ft 15-25ft cage movement ≈1.5in North
C1 (18in)	Centered from $0 - 25$ ft Incomplete data but either cage has moved into center bar or vice versa. Center bar is touch cage on south side; Cage movement is more likely 35-60ft not enough information	Centered from 0-25ft Incomplete data below 25ft but cage shows signs of movement to the north 35-60ft no cage
C2 (24in)	Centered from 0-25ft Touching cage from 30 to 35ft on SW side (up to 6in movement) 35-60ft not enough information	Cage ≈2in off center to the West at 5ft Centered from15ft to 25ft 25-35ft ≈1in NE 35-60ft no cage
E1 (18in)	Centered 0-40ft (full depth)	Centered 0-20ft Less than 1 in off center NE
T1 (18in)	Not enough information with only center bar data	No cage
T2 (24in)	Not enough information with only center bar data	No cage

Table 4.1 Summary of cage or center bar movement trends.

While auger-cast piles are often reinforced with only a single center bar, their use on highway projects subjects them to AASHTO specifications which require a minimum reinforcement of 1% of the gross concrete area for concrete columns. For an 18-in pile with only a single center bar, this specification would require a #18 bar be used, the largest commonly available size. For a 24-in pile, this would not suffice. Therefore it is reasonable to suggest that the use of full rebar cages may become more commonplace on highway production piles and thermal measurements taken at cage location should then be considered as a viable option for integrity testing. At a minimum partial length cages can be implemented like that used for this study. This increases the verification capability in high bending moment regions beneath the pile cap.

Of the twenty seven wires installed for this study, four exhibited partial length failure around peak temperature times. Others went dead and came back multiple times, but were alive at peak hydration. No wires were completely unusable.

4.2 Grout Volume Determination

Thermal evaluation of ACIP piles (or shafts) can be both qualitative and quantitative. To transform qualitative insights to quantitative radius or cage offset values, the placed volume of grout (or concrete) is required. Unfortunately, this is a highly interpretative quantity. Where AME systems are not intended for radius determination, they provide accurate knowledge of the pumped grout. For the purposes of thermal data analysis only the in-hole grout volume is needed.

AME data including grout flow rate, volume, penetration rate, depth of auger, and grout pressure provide a means to better identify the as-built pile, but interpretation of the recorded data from different sensors can lead to different conclusions. Figure 4.1 shows the Pile E1 radius profiles predicted from manual pump stroke counts, grout factor per 2-ft interval, cumulative volume changes per 1-ft interval, and flow rate divided by extraction rate. The actual pile radius is also shown in which the average of the three measurement systems was used. In short, the predicted radius from placed volume does not under-estimate radius.

The total grout volume is directly proportional to the square of radius. The various methods of determining radius place excess volume at different locations along the length of the pile making a simple rule for the determination of the true waste volume difficult (e.g. initial pump strokes or some portion of the volume after return is observed). For example with Pile E1 the true volume of the pile was determined from manual measurements to be approximately 80 ft³ and the overall pumped grout was 109 ft³. By subtracting the volume from initial pump strokes (10 ft³) and the entire volume after grout return was observed (34 ft³), the pile volume would drop to 65 ft³. Adding back the theoretical volume of the auger in the ground at the time return was noted (22 ft³), the volume increases to 87 ft³ which is 7 ft³ too high (8.8%). This would increase the actual average pile radius (9.6 in) to a prediction of 10.4 in.

Determination of the true wasted grout volume is further complicated by the amount of grout that mixes with the ground water and becomes unrecognizable as clean grout return. It is conceivable that an overflow casing (or similar) could be used to better quantify the waste volume. No suggested configuration is provided herein.

Figure 4.1 Radius predictions from grout volume measurements.

FDOT currently requires ACIP piles to be placed with at least 15% extra volume. This in part activates passive pressure along the side of piles and in cases like this could account for inaccurate grout return/waste assessment.

4.3 Analysis of ACIP Pile Thermal Profiles

Using accurate measurements of as-built piles (or shafts), the true volume was input into various radius prediction methods for thermal integrity data sets. The use of small cages in small piles or center bar instrumentation schemes places the measurement location at or near the top of the bell curve (i.e., radial temperature distribution, Figure 3.8). Traditional shaft evaluation algorithms that assume the location to be near the edge of shaft in the linear region are therefore not appropriate. Best fit projections from hyperbolic T-R curves show that shafts larger than 2 ft do not provide the same response as smaller piles when center bar measurements are used and are not recommended. Piles or shafts larger than 2 ft should use cage measurements for thermal analyses, which is not unreasonable for that size element.

The T_{zero} linearization of the hyperbolic T-R relationship was confirmed to be conservative for all diameters of foundation elements regardless of the measurement location. The T_{soil} method was shown to be a reasonable approximation for smaller elements for both center bar and cage position measurements. However, a slight over-prediction of radial variations results from its use. Figure 4.2 includes the model predicted best fit T-intercepts for cage based measurements in shafts greater than 2-ft diameter with no more than 6 in of cover, and for both center bar and cage measurements in piles 2-ft diameter or smaller. For ACIP piles, the simplistic T_{soil} method could be refined based on these model results to use $0.9T_{soil}$ as the intercept value. In general any intercept selected that is less than that shown results in conservative radius variation predictions.

Figure 4.2 Intercept temperature as a function of measurement position.

Using a shaft and site specific intercept temperature from Figure 4.2, Eqn 3.1 can be rewritten in a more generic format (Eqn 4.1) where the intercept temperature is denoted as T_{int} .

$$R_{effective} = \frac{R_{avg}}{(T_{avg} - T_{int})} T_{measured} + \frac{R_{avg}T_{int}}{T_{int} - T_{avg}}$$
Eqn. (4.1)

The radial temperature distribution of ACIP piles changes only moderately around the top of the bell curve (Figure 4.3). In that region (i.e. ± 2 in or $\pm 0.3^{\circ}$ F), lateral center bar movement has little effect on the measured temperature and therefore the predicted radius.

Figure 4.3 Radial temperature distribution in 18-in ACIP pile (12 hrs).

However, piles tested in this study were confirmed to have moved up to 5.5 in for 18-in and 7.5 in for 24-in diameters. This translated into potential radius prediction errors of 1 to 2 in based on the observed R/T slope of 0.25 in/°F. These errors create both under and over predictions as the integrated temperature vs depth curve is equated to the placed volume; where one region of the pile under-predicts radius from low temperature, higher temperature regions must over-predict to balance the overall volume. These types of errors are preventable via use of more centralizers to ensure the center bar reinforcement remains centered. In this case, centralizers were spaced approximately every 10 feet (Figure 4.4).

Figure 4.4 Number 8 bar with small and widely spaced centralizers ≈ 10 ft (left).

4.4 Summary

Results from thermal integrity profiling of ACIP piles showed promising capabilities to evaluate the as-built piles. Analysis methods that were hypothesized in the original study were vetted and showed good agreement with the true pile size and shape. These methods were further refined to minimize errors associated with simplistic linearization of the inverse hyperbolic tangent relationships.

Both probe and wire systems were shown to provide the similar results, however, wire systems have the distinct advantage of reducing cage/reinforcement congestion. PVC access tubes were also shown to be better for small volumes of grout in piles that can be vulnerable to heat sinking with steel tubes.

Like most new developments and the additional information provided for the contractor, thermal profiling has shown that centered single bar reinforcement is central to TIP effectiveness and that tighter spacing would be beneficial. The shape of the pile predicted by thermal evaluation mimicked the actual pile closely but accurate determination of grout volume directly affects the thermal analysis results. As such, it is the critical factor in the entire ACIP pile quality assurance program, and improvements are needed in this determination.

References

- Anaheim Automation (2016). <u>https://www.anaheimautomation.com/search.php?q=23y102s-lw8</u> accessed April 6, 2016.
- Anderson, Byron Keith. (2011). "Thermal Integrity Profiling Instrumentation Development." *Graduate School Theses and Dissertations*. http://scholarcommons.usf.edu/etd/2987
- Arya, S. Pal. (2001). "Introduction to Micrometeorology" 2nd Edition. Published by MPG, Bodwin, Cornwall, Great Britain. ISBN 0-12-059354-8. p.48.
- ASTM Standard D7949-14, (2014). "Standard Test Methods for Thermal Integrity Profiling of Concrete Deep Foundations," ASTM International, West Conshohocken, PA
- Bogue, Robert H. (1947). "The Chemistry of Portland Cement." Reinhold Publishing Corporation, New York.
- Brown, Dan A., Dapp, Steven D., Thompson, W. Robert, and Lazarte, Carlos A. 2007. "Design and Construction of Continuous Flight Auger (CFA) Piles." Geotechnical Engineering Circular No. 8. FHWA-HIF-07-03.
- Brown, Dan A., Turner, John P., Castelli, Raymond J. 2010. "Drilled Shafts: Construction Procedures and LRFD Design Methods." NHI Course No. 132014. Geotechnical Engineering Circular No. 10. FHWA NHI-10-016.
- Caltrans (2005). "Method of Ascertaining the Homogeneity of Concrete in Cast-in-Drilled-Hole (CIDH) Piles using the Gamma-Gamma Test Method," California Test 233, State of California Business, Transportation, and Housing Agency, Sacramento, CA.
- COLOG. (2010). "4-Pi Gamma-Gamma Density Logging (GDL) Investigation of One Drilled Shaft Foundation." Final Report prepared by COLOG, a division of Layne Christensen Company, Lakewood, CO, March 22, 2010.
- DFI (2017). "ACIP Pile Installation, Monitoring, Test and Extraction Program". Preliminary Report. A DFI Committee Project Funds 2016 Project, DFI Augered Cast-In-Place Pile Committee.
- Ge, Zhing. (2005). "Predicting temperature and strength development of the field concrete." Doctoral Dissertation, Iowa State University. UMI No. 3200417.
- Hollema, D.A., and Olson, L.D. (2003). "Crosshole Sonic Logging and Velocity Tomography Imaging of Drilled Shaft Foundations." Proceedings from International Symposium (NDT-CE 2003), Non-Destructive Testing in Civil Engineering 2003 in Berlin, Germany. ISBN 3-931381-49-8.
- Incropera, Frank P., and Dewitt, David P. (2007). "Fundamentals of Heat and Mass Transfer" 6th Edition. Published by John Wiley & Sons, New York, NY. ISBN 0-471-45728-0.
- Johnson, K. (2014). "Temperature Prediction Modeling and Thermal Integrity Profiling of Drilled Shafts." Proceedings from ASCE Geo-Congress 2014, pp. 1781-1794. doi:10.1061/9780784413272.175
- Kranc, S., and Mullins, G. (2007). Inverse Method for the Detection of Voids in Drilled-Shaft Concrete Piles from Longitudinal Temperature Scans. Inverse Problems, Design and Optimization Symposium. Miami, FL, U.S.A., April 16-18, 2007.
- Mindess, Sidney, Young, Francis J., and Darwin, David. (2003). "Concrete" 2nd Edition. Published by Pearson Education, Inc., Upper Saddle River, NJ. ISBN 0-13-064632-6.

- Mullins, Gray. (2008). "Concrete Hydration Energy: Friend and Foe." Slideshow presented to ACI Florida Suncoast Chapter on March 13, 2008.
- Mullins, Gray. (2010). "Thermal Integrity Profiling of Drilled Shafts." The Deep Foundations Institute Journal. Vol.4, No. 2 December 2010. pp. 54-64.
- Mullins, Gray. (2012a). "Advancements in Drilled Shaft Construction, Design, and Quality Assurance: The Value of Research." Slideshow presented at the 17th Annual Great Lakes Geotechnical/Geoenvironmental Conference (GLGGC), Cleveland, OH, May 24.
- Mullins, G. (2012b) Load Testing of Drilled Shafts Constructed with CETCO Polymer Slurry, Final Report, 65 pp.
- Mullins, G. and Winters, D. (2014) Defining the Upper Viscosity Limit for Mineral Slurries used in Drilled Shaft Construction, FDOT Project No. BDK84-977-24, Final Report, 264 pp.
- Mullins, Gray. (2013). "Advancements in Drilled Shaft Construction, Design, and Quality Assurance: The Value of Research." International Journal of Pavement Research and Technology. Vol. 6 No. 2, March, pp. 93-99.
- Mullins G., and Winters, D. (2011). Infrared Thermal Integrity Testing Quality Assurance Test Method to Detect Drilled Shaft Defects. Washington State Department of Transportation, Olympia, WS. Report No. WA-RD 770.1
- Mullins, G., and Winters, D. (2012). "Thermal Integrity Profiling of Concrete Deep Foundations." Slideshow presented at the Association of Drilled Shaft Contractors Expo 2012, San Antonio, TX, March 14-17.
- Ozisik, M. Necati. (1993). "Heat Conduction" 2nd Edition. Published by John Wiley & Sons, Inc., New York, NY. ISBN 0-471-53256-8.
- Palm, Martin. (2012). "Single-hole sonic logging: A study of possibilities and limitations of detecting flaws in piles." Master Thesis, Royal Institute of Technology, Department of Civil and Architectural Engineering. ISSN 1103-4297.
- Pauly, Nicole M. (2010). "Thermal Conductivity of Soils from the Analysis of Boring Logs." Master's Thesis, University of South Florida, Department of Civil and Environmental Engineering.
- Pfeiffer, K. and Olson, J. (1981). "Basic Statistics for the Behavioral Sciences." Published by Holt, Rinehart, and Winston. ISBN 0-03-049866-X.
- Piscsalko, George. (2014). "Non-Destructive Testing of Drilled Shafts and CFA Piles Current Practice and New Method." 2014 International Conference on Piling and Deep Foundations. Stockholm, Sweden. 533-546.
- Piscsalko, G., Alvarez, C., Belardo, D., and Galvan, M. (2014). "Using Thermal Integrity Profiling to Evaluate the Structural Integrity of Soil Nails." Deep Foundations Institute 39th Annual Conference on Deep Foundations: Atlanta, GA. 195-202.
- Poole, Jonathan L. (2007). "Modeling Temperature Sensitivity and Heat Evolution of Concrete." Doctoral Dissertation, University of Texas at Austin. UMI No. 3285913.
- Rausche, F., Likins, G., and Hussein, M. (1994). "Formalized Procedure for Quality Assessment of Cast-In-Place Shafts Using Sonic Echo Pulse Methods." Transportation Research Record No. 1447: *Design and Construction of Auger Cast Piles and Other Foundation Issues*. Washington, D.C. pp. 30-38. Accessed at <u>www.pile.com\refererence</u>

- Schindler, A.K. and Folliard, K.J. (2002). "Temperature Control During Construction to Improve the Long Term Performance of Portland Cement Concrete Pavements." Center for Transportation Research. The University of Texas at Austin.
- Schindler, A.K. and K.J. Folliard. (2005). "Heat of Hydration Models for Cementitous Materials." Technical Paper, ACI Materials Journal, V. 102, No. 1, January-February 2005.
- Sellountou, A. and Alvarez, C. (2013). "Thermal Integrity Profiling: A Recent Technological Advancement in Integrity Evaluation of Concrete Piles." Proceedings from the First International Conference, Seminar on Deep Foundations: Santa Cruz, Bolivia.
- Silwinski, Z.J., and Fleming, W.G.K. (1983). "The Integrity and Performance of Bored Piles." Piling and Ground Treatment for Foundations, Thomas Telford, London, pp. 153-165.
- Folliard, K.J., Juenger, M., Schindler, A., Riding, K., Poole, J., Kallivokas, L.F., Slatnick, S., Whigham, J., Meadows, J.L. (2008). "Prediction Model for Concrete Behavior – Final Report." Center for Transportation Research, The University of Austin at Texas. FHWA/TX-08/0-4563-1.
- Taylor, H.F.W. (1997). "Cement Chemistry" Second Edition. Published by Thomas Telford Publishing, London. ISBN 0-7277-2592-0.
- USDOT, (2015). "Integrity Testing of Foundations," Central Federal Lands Highway Program, FHWA, Lakewood, CO. <u>http://www.cflhd.gov/resources/agm/engApplications/BridgeSystemSubstructure/221Integrit</u> <u>yTestingofFoundation.cfm</u>
Appendix A

TIP Data

Figure A.1 TIP wire data for pile E1, at cage location (left) and center bar location (right).

Figure A.2 TIP wire data for piles T1 (left) and T2 (right), at center bar location.

Figure A.3 TIP wire data for pile C1, at cage location (left) and center bar location (right).

Figure A.4 TIP wire data for pile C2, at cage location (left) and center bar location (right).

Figure A.5 TIP wire data for pile L1, at cage location (left) and center bar location (right).

Figure A.6 TIP wire data for pile L2, at cage location (left) and center bar location (right).

Figure A.7 TIP probe data for piles C2 (left) and L2 (right), at cage location.

Appendix B

TIP Effective Radius Profiles

Figure B.1 Pile C1 effective radius from cage wire data, using T0 method (left) and Tsoil method (right).

Figure B.2 Pile C1 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right).

Figure B.3 Pile C2 effective radius from cage wire data using reported grout volume over given partial length, T0 method (left), Tsoil method (right).

Figure B.4 Pile C2 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right).

Figure B.5 Pile T1 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right).

Figure B.6 Pile T2 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right).

Figure B.7 Pile L1 effective radius from cage wire data using reported grout volume over given partial length, T0 method (left), Tsoil method (right).

Figure B.8 Pile L1 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right).

Figure B.9 Pile L2 effective radius from cage wire data using reported grout volume over given partial length, T0 method (left), Tsoil method (right).

Figure B.10 Pile L2 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right).

Figure B.11 Pile E1 effective radius from center bar wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right).

Figure B.12 Pile E1 effective radius from cage wire data using actual reported grout volume (max) and reported volume grout less initial pump count (min) – T0 method (left), Tsoil method (center), min/max from all combinations (right).

Appendix C

Boring Logs

				STATE OF FLORIDA DEPAR	TMENT OF T	RANSPORTA	TION				FORM	875-020-12
				FIELD BC	DRING I	_OG				1	IVI	08/99
r		12							S		OF	2
PROJE	CT NO.	NIR	NAME	Anger Cast	Pile R	esearch	OUNTY	Lake		_ DISTRIC	т_5	
LOCAT	ION 0	ka humpk	ia FL	TOWNSH	IP	R	ANGE .			_ SECTION	1	
ROAD	NUMBER				1		SURFA	CE ELEV	ATION			
EQUIP	MENT TYF	E CMO	2 75	RI	g NO. 🤶	2600 ¢	5	BO	RING	NO. <u>#1</u>	(1	-1)
DATE S	STARTED	9/12	2010	COMPLETED	1/17/2	0110	_ DRILI	ED BY	Bru	ve / KUL	<u>c</u>	
LOGGE	ED BY D	allon /	todd	BORING TYPE:	A	JGER, WA	SHED, PE	RCUSSION	N, ROT	ARY>		
WATER	TABLE:	0 HR	24 HRS.	3 (Collapse) HRS.	C	ASED, UNC	ASED, D	RILLING M	<u> </u>			
SAMPL	E CONDIT		 7	SAMPLE TYPES			TES	TS'				
0,	2.0011011				A A	UGER	160	T· W.C.:	WA ¹	TER CONTE	ENT (%))
			GOOD		(SB) S	PLIT BAF	REL	V:	IN-S) FEST (T	SF)
- 2			LOST		S: S	HELBY T	UBE				201 (1	0.)
	a		CORE SAM	PLE	RC: F	OCK CO	RE	SIZE				
ELEV	DEPTH	SPT				SAMPLES	3					
(FT.)	(FT.)	BLOWS	MATERIAL	DESCRIPTION	CON.	NO. TYPE	REC. (%)	TEST	S	REN	IARKS	
8	r	2	Dark Brow	In to Black	VIII	1	50	SB				
		2	Jana		$\frac{1}{1}$					A 201 - 11-1	141-14-14-14-14-14-14-14-14-14-14-14-14-	
	2 — 2	2.3	Brown Sc	and	1/74	2	50	SB				
		1	Light Bron	un Sand	V/tr	X	50	SB				
	5	22	Light Brow	in to white			<u> </u>	40				-
	5	ini	Sand		1/41	4	50	SB				
	7	- Solo	Light Brown	To white Trace of crange	1/17	_5	60	SB				
	8—	ل دني هر	San	0	VI I			C12	_	· · · · · · · · · · · · · · · ·		
	<u> </u>	4	Jan	R	1////	<u> </u>	60	20				
	10	3	Same		<u> +</u>	7	70	SB.		an a		
	11		BROOM	t - State Contractor - State - Sta					_	<u> </u>		
	12											
	13							27				
			2		_				1			
	14			1								
	15	2		a.10 to	777.	sectors		ar - sama San Salah (Karang Banara (Karang Banang Banang B			a francasteria analoga	
	10 -	3	Black S	samo		B	50	SB				
	17 -				farm brokenne	na sun e un substancementaria	1. Million Contractor (Contractor)	Electrotrop-short-shap	_			
	18							A				
	10											
Ϋ́,	26		×									
	60							-			5	

-

			STATE	FIELD BO	RING L	RANSPORTA	TION				FORM 675 MAT	5-020-12 ERIALS 08/99
									SI	неет _2	OF	2
PROJE			NAME		D	C	OUNTY				T	
ROAD		5			۳	K	SURFA			_ SECTION	N	
EQUIP	MENT TYP	۴E	S AL	1 RIC	G NO.		- 001474	BOF		NO. #1	1LI	
DATE S	TARTED			MPLETED			DRILI	ED BY		<u>///</u> /	- (- ' · ·	}
LOGGE	D BY	1963-1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -	BOF	RING TYPE:	AL	JGER, WA	SHED, PE	RCUSSION	, ROTA	ARY,		
WATER	TABLE:	0 HR	24 HRS	_ HRS	C/	ASED, UNC	CASED, DI	RILLING MU				
<u>SAMPL</u>	<u>E CONDIT</u>	<u>ions:</u> D	DISTURBED S.	AMPLE TYPES:	A: A	UGER	TES	<u>rs:</u> w.c.:	WAT	ER CONTE	ENT (%)	
			GOOD	2	SB: S	PLIT BAF	RREL	T:	TOR	VANE (TSF	;) ·	
			LOST		S: S	HELBY T	UBE	V:	IN-S	ITU VANE 1	FEST (TS	F)
			CORE SAMPLE		RC: R	осксо	RE	SIZE				
ELEV.	DEPTH	S.P.T.				SAMPLES	6					
(FT.)	(FT.) 203	BLOWS	MATERIAL DES	CRIPTION	CON.	NO. TYPE	REC. (%)	TEST	5	REN	IARKS	
	21-	7	Light Brawn	n Sand	// <u>†</u>	9	bO	SB	-		-	
	22	0			11							
	22-								4			
	2											
	29			the suggest from the family and the suggest states of the suggestion of the suggesti				_				
	26-	13)	Clay W/Sai	Brown	11/1/1/	-10	100	SR				
	27-				<u> </u>							
	70-						2					
+:	29								_			
	20											
	0	7	Stiff Areys	andy Clay	11		MA	(1)	-	2157		-
	31-	8			<u> // // // // // // // // // // // // /</u>	1	100	5				
	32-				-				_			
	33-				_	_			+			
	34-	-						a (*)	4			
	35			R()	- 1 / /							
	30-	8	Tan Sibhtly	SILLY	//	-11	90	SB	1			
	27-				f. 1.		James	· · ·			سامي ميو يا مرام	
	28		•						-			
	20								-			
	24		7						コ			
	1.4	7	Same		11	11	an	CA				-
	41.5	9		-	80/1	15	W	20		RECYCI	ED PAPER	
			FOB 4	11,5'	+++	a		1999 p. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				

				STATE OF FLORIDA DEPAR	RING L	RANSPORTAT	ION			F	ORM 675-020-12 MATERIALS	
	d.	1.		3 - X					SH	EET	OF	
	D. 1	1A	NAME	Auger Cast	Pile	<u>Resea</u> te		Lake		DISTRICT	5	
	BER	wryp				10	SURFA	CE ELEVA	TION	econom _		
QUIPMENT	TYPE	CME	75	RI	g NO	2600	5	BOF	RING NO	D. <u>#2 (</u> €	/)	
ATE START	red 9	12/2	2016	COMPLETED _	9/13	12010		ED BY	Bruc	e /Kule		
OGGED BY	Dal	ton/	ode	BORING TYPE:	AL CA	JGER, WAS ASED, UNC	SHED, PE ASED, QF	REUSSION	i, Rolaf Jd,	(Y,		
ATER TAB	LE: 0H	R	_24 HRS	HRS					5X	8 g.		
AMPLE CO	NDITION			D SAMPLE TYPES:	A: A	UGER	TEST	<u>rs:</u> w.c.:	WATE	ER CONTEN	Г (%)	
			GOOD		SB S	PLIT BAF	RREL	T: V	TORV	ANE (TSF)	ST (TSF)	
			LOST		S: S	HELBY T	UBE	•.				8
			CORE SAM	PLE	RC: R	OCK CO	RE	SIZE				
LEV. DEF	ртн s	.P.T.	MATERIAL			SAMPLES	5	TEST	s	REMA	RKS	
(FT.) (F_ C	Г.) BL	OWS		DEGORAL HON	CON.	TYPE	(%)		<u> </u>			
1			AAA	NNA	N N		\sim		4		2	
2			Dark Br Black	own to	114	1	26	SB			5	
3		3	Light Br Brown	own to Canal	114	_7.	40	SB		_		
5-		2	Light ta	in Sand	111	2	60	ŚR.				
		4	light ta	n Sand	P11.	2	~~~	00				
7		5	Trace o	of orange	1/1	<u> </u>	/0	SB			-	
8	-	4	Sam	L	11/14	5	50	SB	1			
10-	E		Same) }	///i-	ej _	70	SB.				
11		5	Sam	Q		7	60	SB	_	*. 		
		337	Light fo	an Sand	14	8	60	SB				
14		2	Dark Bro	wh to gray	11/11	9	70	SB		- Woute	[e 15]	1
15		T	Sar	19	1111		10	22	- 492-1	100	JIE IJ	-
16						-			E		3	
18		55	tan S	and	Nt.		75	SE	2		2	
-19		6		,	IM		10					1.99° . 44
14							and a start		-			×.
					01	State of the second sec				RECYCLE	DPAPER)

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FIELD BORING LOG Primakeshanic Autoros.

0

FORM 675-020-12 MATERIALS OF

PROJECT NONAMETOWNSHIP LOCATIONTOWNSHIP ROAD NUMBER EQUIPMENT TYPERIG NO DATE STARTEDCOMPLETED LOGGED BYBORING TYPE: AUGER, V CASED, U WATER TABLE: 0 HR24 HRSHRS	COUNTY DISTRICT RANGE SECTION SURFACE ELEVATION BORING NO. #2(C DRILLED BY WASHED, PERCUSSION, ROTARY, UNCASED, DRILLING MUD,	()
LOCATION TOWNSHIP TOWNSHIP TOWNSHIP TOWNSHIP TOWNSHIP TOWNSHIP TOWNSHIP TOWNSHIP TOWNSHIP TO TOWNSHIP	RANGE SECTION SURFACE ELEVATION BORING NO. #2(C DRILLED BY WASHED, PERCUSSION, ROTARY, UNCASED, DRILLING MUD,	1)
ROAD NUMBERRIG NO EQUIPMENT TYPERIG NO DATE STARTEDCOMPLETED LOGGED BYBORING TYPE: AUGER, V CASED, U WATER TABLE: 0 HR24 HRSHRS	SURFACE ELEVATION BORING NO. #2.C	
EQUIPMENT TYPE RIG NO. DATE STARTED COMPLETED LOGGED BY BORING TYPE: WATER TABLE: 0 HR. 24 HRS. HRS.	DRILLED BY	
DATE STARTED COMPLETED LOGGED BYBORING TYPE: AUGER, V WATER TABLE: 0 HR24 HRSHRS	DRILLED BY WASHED, PERCUSSION, ROTARY, UNCASED, DRILLING MUD,	
LOGGED BY BORING TYPE: AUGER, V WATER TABLE: 0 HR. 24 HRS. HRS.	UNCASED, DRILLING MUD,	
WATER TABLE: 0 HR24 HRS HRS	DIVOROED, DIVIELING MOD,	
SAMPLE CONDITIONS: DISTURBED SAMPLE TYPES: A AUGER	TESTS: W.C.: WATER CONTENT (%	6)
GOOD SB: SPLIT B	BARREL T: TORVANE (TSF)	
LOST S: SHELBY	V: IN-SITU VANE TEST (Y TUBE	(TSF)
CORE SAMPLE RC: ROCK C	CORE SIZE	
SAMPL	LES	
ELEV. DEPTH S.P.T. MATERIAL DESCRIPTION CON. NO. TYPE	E (%)	S
25 le sand-	- Sample fell	oute
2) traces of sitt (?)	Spoon	
22		
23 H SAME		
23 9 Tan silty Sand 14		ann an ann an
26- 7 WITROCE OTAMOR 1/11	BO SB	
27	an a	Contraction of
28 3 TAN SILLY Sand 1	an ep	
	- 00 315 -	
	· · · ·	
30 7 ///	5- 00	
31-7- Same 1/7-13	80 58 -	
32		
Sing Same	1-70 55 -	
	-	<u></u>
an Shightly shity // In S	5 70 SB <u>-</u>	
<u> </u>		
10		1
2012 Same	TO SA T	
29 B DUILLE		
11/2		
		0

"Which is a set

5

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

FORM 675-020-12 MATERIALS

PROJECT NO NAME		C	OUNTY		DISTRICT				
OCATION TOWNS	HIP	R	ANGE -		SECTION				
ROAD NUMBER		3	SURFA	CE ELEVATION	N				
EQUIPMENT TYPE F	RIG NO.			BORING	NO. # 2 (C+1)				
DATE STARTED COMPLETED									
LOGGED BYBORING TYPE:	A	UGER, WAS	SHED, PE	RCUSSION, ROT	ΓARY,				
WATER TABLE: 0 HR24 HRS HRS	U	ASED, UNC	ASED, Dr	RILLING MOD,					
	<u>S:</u> A: A	UGER	TEST	<u>'S:</u> W.C.: WATER CONTENT (%)					
GOOD	SB [·] S		REL	т: то	RVANE (TSF)				
	Q. Q.		URE	V: IN-	SITU VANE TEST (TSF)				
	0. C			SIZE					
CORE SAMPLE									
ELEV. DEPTH S.P.T. MATERIAL DESCRIPTION		NO.	REC.	TESTS	REMARKS				
40 5 Too Shottly Silter		TYPE	(%)						
4/ 6 Jun Sand	1/1	17	70	SB	1				
	-1-11								
42	- 11-								
43-3- Same	1/t	TQ	70	C2 -	<u>–</u>				
4/4/ 0	<u>' / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / </u>	10	\sim						
45					<u> </u>				
6 Slightly Sitty tan	11 th	10	QA	SB -	~				
46 5 Sand	1101	1 +	$\overline{\mathcal{O}}$	02					
47	1	+-			—				
40 5 tan Slightly Situ	114		-12	70 -	+ lost First				
LIG 5 Sand	11	20	/0	56 -	20% Of Same				
			an a sha kabar et dana e dana e		-				
	777								
51-7 Same	1/7	21	70	SB -	· ·				
52				2000 2000 2000 2000 2000 2000 2000 200					
02 For Sound which Shahi		1.12			I lost King of				
53 - The can stight	1/11	72	in	SB -	20% of Samely				
54 7 Marce of SIM			00		From Tipot SP				
55		1							
5 C GWA	$//\frac{1}{11}$	72	an	512 -	-				
50 5 SUINE	1/10	1-22	IV.	.OU					
57		<u>+</u>							
58 8 (0000	14		0	\bigcirc					
Solute	//H	1-1-1	90	<u> 36 -</u>	a man				
				The second s					
		-							

RECYCLED PAPER

-

			STATE OF FLORIDA DEP	STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FORM 675-02					
			FIELD B		-08			SHEETOF	
PROJE	CT NO.		NAME	-	С	OUNTY		DISTRICT	
LOCAT	ION		TOWNS	HIP	R	ANGE		SECTION	
ROAD	UMBER			~	\cap	SURFA	CE ELEVATIC)N	
EQUIP	MENT TYP	Е		RIG NO.				Э NO. <u>#2 (C-1)</u>	
DATE S	TARTED		COMPLETED	V U	~	_ DRILI	ED BY		
LOGGE	D BY		BORING TYPE:	А	UGER, WA	SHED, PE	RCUSSION, RC)TARY,	
WATER	TABLE:	0 HR	24 HRS HRS	с 	ASED, UNC	ASED, D	RILLING MUD,	; 	
<u>SAMPL</u>	E CONDIT	<u>ions:</u> D		<u>:S:</u> A: A	UGER	TES	<u>TS:</u> W.C.: W	ATER CONTENT (%)	
			GOOD	SB: S		RREL	T: T(ORVANE (TSF)	
			LOST	S: 5	HELBY T	UBE	V: IN	-SITU VANE TEST (TSF)	
		Π	CORE SAMPLE	RC: F	коск со	RE	SIZE		
					SAMPLES	6			
ELEV. (FT.)	(FT.)	S.P.T. BLOWS	MATERIAL DESCRIPTION	CON.	NO. TYPE	REC. (%)	TESTS	REMARKS	
	(a) —	599	Same	1/1-	15	70	SB -	-	
Walker Contraction	62 —						•		
	63-	57	Contraction	111-	-7/0	I.D	cn -		
	104	8	Same	1////	LV	00	20-		
1	5		Die Bergen Auf Antonio (* 1997) Die Constant (* 1997) Bergen auf der Bergen (* 1997) 19	1	•		·	-	
	6 8.	0	Sancia .	11+	11	10	512		
	<u> </u>	8	Jarrie			00	00 -		
	V 1-				-		· —	-	
	60-	5	Campa	11/13	18	10	50-	<u>+</u> ° ∼ .	
	69	8	Juliure	1/20	10	ΨŪ	<u> </u>		
	70-			110	 				
	71-	7	Same	(1 4	29	70	SB =		
	-11-5-		EOR 71.5'						
	·		~ ~ •		<u> </u>				
					1_				
				*			-		
			· · · · ·	-		2			
	-			-	-		_	· ·	
	1 _			_				1	
			·		-	1	-	-	
94 - Q	-			-			-	4	
			· · ·			•			
		2						. RECYCLED PAPER	

SI PROJECT NO. NAME Awaler (are Pite Resentation County Lake LOCATION Continued FL. TOWNSHIP RANGE ROAD NUMBER SURFACE ELEVATION SURFACE ELEVATION EQUIPMENT TYPE CME 75 RIG NO. 20005 BORING N DATE STARTED 9/13/2016 COMPLETED 9/13/2016 DRILLED BY Grue BORING N LOGGED BY 2016 COMPLETED 9/13/2016 DRILLED BY Grue AUGER, WASHED, PERCUSSION, ROTA VATER TABLE: 0 HR. 24 HRS. HRS. CASED, UNCASED, DRILLING MUD, CASED, DRILLING	STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FORM 675-020-12 FIELD BORING LOG MATERIALS											
PROJECT NO. NAME Augler (are pile Resence County Lake LOCATION Okahumpka, FL. TOWNSHIP RANGE ROAD NUMBER SURFACE ELEVATION EQUIPMENT TYPE CME 75 RIG NO. 2005 BORING M DATE STARTED 9/13/2016 COMPLETED 9/13/2016 DRILLED BY RTM LOGGED BY Dates (1700) 1000 BORING TYPE: Auger, washed, percussion, ROTA VATER TABLE: 0 HR. 24 HRS. HRS. Cased, uncased, DRILLING MUD, Cased, Uncased, Uncased, DRILLING MUD, Cased, Uncased, DRILLING MUD, Cased, DRILLING MUD, Cased, Uncased, DRILLING M	HEETOF											
LOCATION Openhamolea FL TOWNSHIP RANGE ROAD NUMBER SURFACE ELEVATION SURFACE ELEVATION EQUIPMENT TYPE CME 75 RIG NO. 20005 BORING N DATE STARTED 9/13/2016 COMPLETED 9/13/2016 DRILLED BY RTV LOGGED BY DATE 10000 BORING TYPE: AUGER, WASHED, PERCUSSION, ROTA VATER TABLE: 0 HR. 24 HRS. HRS. CASED, UNCASED, DRILLING MUD, CASED, DRILLING MUD, CASED, DRILLING MUD, CASED, UNCASED, DRILLING MUD, CASED, UNCASED, DRILLING MUD, CASED, DRILL	DISTRICT 5											
ROAD NUMBER	SECTION											
EQUIPMENT TIPL GAL 13 Completed 9 13 12 0 DRILLED BY BORING TYPE LOGGED BY DAtes 1 0 1 0 0 13 12 0 DRILLED BY BORING TYPE WATER TABLE: 0 HR. 24 HRS. AUGER, WASHED, PERCUSSION, ROTA SAMPLE CONDITIONS: DISTURBED SAMPLE TYPES: A: AUGER TESTS: W.C.: WATER GOOD SB SPLIT BARREL T: TOR LOST S: SHELBY TUBE V: IN-SI CORE SAMPLE RC: ROCK CORE SIZE ELEV. DEPTH S.P.T. MATERIAL DESCRIPTION REC. TESTS K MATERIAL DESCRIPTION NO. REC. TESTS	$\frac{10}{12} \frac{1}{12} \frac{1}{12}$											
LOGGED BY Dation / Todd BORING TYPE: AUGER, WASHED, PERCUSSION, ROTA WATER TABLE: 0 HR. 24 HRS. HRS. SAMPLE CONDITIONS: DISTURBED SAMPLE TYPES: A: AUGER TESTS: W.C.: WATER GOOD SB SPLIT BARREL T: TOR LOST S: SHELBY TUBE CORE SAMPLE RC: ROCK CORE SIZE ELEV. DEPTH (FT.) S.P.T. BLOWS MATERIAL DESCRIPTION NO. TYPE REC. (%) TESTS	ce Thyle											
WATER TABLE: 0 HR24 HRS HRS CASED, UNCASED, DRILLING MUD, SAMPLE CONDITIONS: SAMPLE CONDITIONS: DISTURBED SAMPLE TYPES: A: AUGER TESTS: W.C.: WAT GOOD SB SPLIT BARREL T: TOR LOST S: SHELBY TUBE CORE SAMPLE RC: ROCK CORESIZE ELEV. DEPTH (FT.) BLOWS MATERIAL DESCRIPTION CON. NO. REC. (%)	ARY,											
SAMPLE CONDITIONS: DISTURBED SAMPLE TYPES: A: AUGER TESTS: W.C.: WAT GOOD SB SPLIT BARREL T: TOR LOST S: SHELBY TUBE V: IN-SI CORE SAMPLE RC: ROCK CORE SIZE ELEV. DEPTH (FT.) S.P.T. BLOWS MATERIAL DESCRIPTION NO. TYPE REC. (%) TESTS												
GOOD SB SPLIT BARREL T: TOR LOST S: SHELBY TUBE V: IN-S CORE SAMPLE RC: ROCK CORE SIZE	ER CONTENT (%)											
LOST S: SHELBY TUBE V: IN-S LOST CORE SAMPLE RC: ROCK CORE SIZE ELEV. (FT.) DEPTH (FT.) S.P.T. BLOWS MATERIAL DESCRIPTION SAMPLES CON. TESTS	VANE (TSF)											
ELEV. (FT.) DEPTH (FT.) S.P.T. BLOWS MATERIAL DESCRIPTION RC: ROCK CORESIZE CON. NO. TYPE REC. (%)	ITU VANE TEST (TSF)											
ELEV. DEPTH S.P.T. BLOWS MATERIAL DESCRIPTION CON. NO. REC. TYPE (%)												
(FT.) (FT.) BLOWS MATERIAL DESCRIPTION CON. NO. REC. TESTS	DEMADIKO											
	REMARKS											
VV Dug Down HANV	AA											
2 2 DARK GREYSANTS 1/1/1 50 SB												
4 2 TANSAND 1/11 2 70 SB	_											
LIGHT TAN SAND 11. 3 10 SB												
7 4 SAME/SCIGATCY 1/1 4 75 SB												
8 4 LIGHT TAN TO BROWN 11 5. 70 SB												
10 4 Tan Sand Att 10 SB	-											
11 3 Tan Sand w/ trace // 7 10 SB												
13 - 3 Tan sand / 7 8 60 SB -												
14 - 2 tan Sand / # 9 95 SB -												
10 1 Braun to tan 1/1/10 25 SB												

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

FORM 675-020-12 MATERIALS

									S	HEET -	2_	of
PROJE	CT NO.		NAME			C	OUNTY	-			RICT	
LOCAT			<u>^.</u>	TOWNSH	P	R	ANGE .			SECT	ION	
ROAD	NUMBER				7		SURFA	CE ELEVA	TION			
EQUIP	MENT TYP	E			₽ [/] NO			BOF	RING	NO. 🕂	3(<u>T-1)</u>
DATE S	STARTED	<u></u>	66	MPLETED	<u> </u>			ED BY				
LOGGE	D BY		BOF	RING TYPE:	A	UGER, WA	SHED, PE	RCUSSION	, ROTA	ARY,		
WATER	R TABLE:	0 HR	24 HRS	_HRS	с —	ASED, UNC	CASED, DI	RILLING MU	ID, _			
<u>SAMPL</u>	E CONDIT	<u>ions:</u> D		AMPLE TYPES:	A· A	UGER	TES	<u>rs:</u> w.c.:	WAT	TER CO	NTENT	Г (%)
		E	GOOD		SB. C		REI	T:	TOF	VANE (TSF)	()
			LOST		00. C			V:	IN-S	ITU VAN	NE TES	ST (TSF)
			LUST		5. 0							
		<u> </u>			RC: F	ROCKCO	RE	_ SIZE				
ELEV.	DEPTH	S.P.T.	MATERIAL DES	CRIPTION		SAMPLES	BEC	TEST	s		REMA	RKS
(FT.)	(FT.)	BLOWS			CON.	TYPE	(%)					
	21-	333	tan Sand trace of s	Slight			40	SB	_			
	22-											1
	22				-				_			
	25											
	24-					<u> </u>				-		
	25		~111 1 A 42	and			· · · · · · · · · · · ·				-	
	76-	57	Silty fari 5	what sand	1/4	17	60	SB		_		
	27	<u> </u>		- ge Juin	<u> </u>							
	21				=							
	28-					<u> </u>			_			2
	29-	4				 			_	_		
	20											1
	01	7	Conol	D	^\/ 	. ~	QA	SIZ	_			
	51 -	8	Samo		111	15	00	30				
	32 -			•		-				-		
S.,	33-				_	1						
	21								-			
	2-1-							5				
	35	5	\sim		TIL			0-				
	26-	6	Same		14	14	70	SB	1995			
	37	Ψ		As	111					10 - A.		
	91				and the second	S.C.			-			
	58 -						1					
	39 -		1.8	100	11 15 E	-				—		
	40				12.5	Constant of	1	-				
	10				1.215	Association (Constraint)						N.

· · · · · · ·

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FIELD BORING LOG

9

1

\$

Marken .

ŧ

FORM 675-020-12 MATERIALS

	and the second s			FIELD BO	RINGL	.OG			SH	еет З	OF 4	
PROJE	CT NO.		NAME			С	OUNTY			DISTRIC	<u> </u>	
LOCATI	ION			TOWNSHI	P	R	ANGE	-	· · ·	SECTION	1	
ROAD	NUMBER			AD	SURFACE ELEVATION							
EQUIPM	MENT TYP	'Е	()(A)		RIG NO BORING NO. $\frac{\# 3}{7}$							
DATE S	TARTED			IPLETED				ED BY				
LOGGE	D BY		BORI	NG TYPE:	AL	JGER, WAS	SHED, PE	RCUSSION	, ROTAI	RY,		
		0 HR	24 HRS	HRS	C	ASED, UNC	ASED, DF	RILLING MU	, <u>–</u>			
SAMPL	E CONDIT		DISTURBED SAI GOOD LOST CORE SAMPLE	MPLE TYPES:	A: A SB: S S: S RC: R	UGER PLIT BAF HELBY T OCK CO	TEST REL UBE RE	r <u>S:</u> w.c.: T: V: SIZE	WATI TORV IN-SI	ER CONTE VANE (TSF TU VANE 1	ENT (%) ⁽⁾ (EST (TSF)	
ELEV. (FT.)	DEPTH (FT.)	S.P.T. BLOWS	MATERIAL DESC	RIPTION	CON.	NO. TYPE	REC. (%)	TEST	s	REN	IARKS	
	4/	4	Same		NE	-15	50	SB	_			
	42_		· · · · ·		· (
	43_								_			
									_	_		
	44 —								_	_		
	4 <u>5</u> 410 —	9	Sanl		1/1	+10		C P				
	117	8		·····	111	14	ψv	212				
	41-								1			
	48											
	49		3		4							
	55		and the second s	-			***				2	
	51-	7	Tan Sand u	1/Thace	14	-17.	70	SB				
1.0	52-			2		-	 		\rightarrow			
	F2 -		1					25	1			
	50		1. Start 1.		-	21						
	54-		Ω.		A		4					
	-55	3	Light for a Q	ndult	TTT.	remus				A		
	56 -	3	Trace of s	THE WI	114	18	(d)	SB	7			
	57		110000 01 0	111	1-1-20	-0	Constant Constant in the	A CONTRACTOR OF THE OWNER OF				
	(5% A.				Sec.	· mar			_			
	58-							Ni.				
	59-							M 2	\pm			
	100		• · · ·	A 4		_			\neg			
	L	L	L	The second			L	1.			6	
		ر .		The second	87					RECYC	ILED PAPER	
				factor		•			1			
			and the second	10.000	~1	· S						

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FORM 675-020-12 MATERIALS FIELD BORING LOG SHEET OF PROJECT NO. _____ NAME _____ _____COUNTY ______DISTRICT ____ LOCATION _____ TOWNSHIP _____ RANGE _____ SECTION _____ SURFACE ELEVATION ROAD NUMBER EQUIPMENT TYPE RIG NO. _____ BORING NO. #3/ COMPLETED _____ DRILLED BY _____ DATE STARTED LOGGED BY _____BORING TYPE: AUGER, WASHED, PERCUSSION, ROTARY, CASED, UNCASED, DRILLING MUD, WATER TABLE: 0 HR. _____ 24 HRS. _____ HRS. _____ SAMPLE CONDITIONS: DISTURBED SAMPLE TYPES: A: AUGER TESTS: W.C.: WATER CONTENT (%) T: TORVANE (TSF) GOOD SB: SPLIT BARREL V: IN-SITU VANE TEST (TSF) LOST S: SHELBY TUBE RC: ROCK CORE _____ SIZE CORE SAMPLE SAMPLES ELEV. DEPTH S.P.T. TESTS MATERIAL DESCRIPTION REMARKS NO. REC. BLOWS (FT.) (FT.) CON. TYPE (%) 00 2 19 5 ame 60 61-02-63. 64. Tan Silty sand 20 # Sample 20 SB 60 00-67 -60. Same EOB 71.5' 6

							TION				FORM 675-020-12 MATERIALS
				FIELD BO	RING	_0G			2		OF 208/99
	07.110			1	01.	0.000		1.044			_0 _2
PROJE	CINO.	<u></u>	NAME	Auger Cast	File	<u>resear</u> de	OUNTY	Late	-		5
LOCAT	ION <u>UR</u>	anump	Ea, FL		IP	K			TION	_ SECTION	
ROAD	NUMBER					<u> </u>	SURFA		TION		(1 0)
EQUIP		E CME	75	RIC	g NO	2600	>5	BOF	RING	NO. <u>#4</u>	(L-2)
DATES		7/13/	2016	_ COMPLETED	-			LED BY	13 ru	Cur / Kyl.	e
LOGGE	D BY <u>_</u>	alton	11000	_BORING TYPE:	A	UGER, WA	SHED, PE	RCUSSION	, ROT	<u>ARÝ</u> ,	
WATER	TABLE:	0 HR	24 HRS	HRS	C.	ASED, UNC	ased, d	RILLING MU	JD, -		
CAMDI							TEO	TO.			
<u>SAIVIEL</u>				D SAMPLE ITPES.	A: A	UGER	<u>TES</u>	<u>15.</u> W.C.:	WA ⁻	TER CONTEN	NT (%)
1.1		E	GOOD		(SB) S	PLIT BAF	RREL	T:	TOF	₹VANE (TSF)	
			LOST		S: S	HELBY T	UBE	V.	IN-S	ITU VANE TE	-ST (TSF)
		- П		IPLE	RC: F	осксо	RE	SIZE			
ELEV.	DEPTH	S.P.T.	MATERIAL	DESCRIPTION	+		REC	TEST	s	REM/	ARKS
(⊢⊺.)	(⊢1.)	BLOWS			CON.	TYPE	(%)				
4 M		1 1	DINA	Dowin 1		\mathcal{A}	K	$ \land \land$			0
	N-	$\lambda \wedge$	pag	Percett	K		K	XI		$\neq \bigvee$	NO
	2		·								
	3	1	Brown	Sand	$//_{\overline{\Box}}$	(100	SR			
		2		<u> </u>	1/11		WU	39			
	4	1	Tan to 1	Brown Sand	11/11	$-\gamma$	LD	SB		—	
	5		· · · · - ·		1.11	L	10	30			
	14	2	Light T	an Jang	$1/t_{\tau}$	2	FA	SB		1	
		4	WIRACE	orange sand	111	-2					
	7	000	Sar	NO C	1H	11	60	SR			
	8 1116	4		v ve	1, F	17	00	20			
	CA	-24	San	0	11H	6	100	SR			
	4	4	2001	NR	1111	<u> </u>	UE U	00			
	10	3	0	1	HH	10	1.n	SA			
	-11	3	San	l	11		60	20		2	
		- 4	Brann t	o light tan,	VIIto	7	65	SA		- All S	
	12	3	Sand W/Tha	Cearlange Sam	111		00	219		- 73	1
	13—				10	1. 19 (1	_	/	1
45	14		1/22/11-53	and the second second	Perist!	Gent and	1	Read a			
9	1				1	ster.	2.5	1			
	1)	1	Dukki	Brown	1/11	6		0.			
	10-	1	purp	and	14	_8	30-	SB			
	17_										
	10			States of the second	1000			de.	_	7 Maf	erial
	10 -			ab x Lang the		-		1979 - S.	_	- is r	eal
	19 -		2 		_	- 1-8	part of		_	- Sof	f c
	2R			and a second fragment		S.a.s.	1. M			1	((1))
	40		[· ·	16.2	S. S.	an .			IV	10H 1

RECYCLED PAPER

			STATE OF FLORIDA D	BORING LOG	ORTATION		FORM 675-020-12 MATERIALS
							SHEETOF
ROJE	CT NO.		NAME		COUNTY	2 	
OCATI	ON		TOW	NSHIP	RANGE		SECTION
ROAD	UMBER		Contra		SURFA	CE ELEVATIO	N
QUIPN	IENT TYP	E	SCATV	RIG NO.		BORIN	GNO. 744 (2-2)
DATE S	TARTED				DRIL	LED BY	
.OGGE	D BY	- 530-01	BORING TYPE	AUGER	, WASHED, PE	RCUSSION, RC	DTARY,
VATER	TABLE:	0 HR	24 HRS HRS	CASED	UNCASED, D	RILLING MUD,	
SAMPLE	E CONDIT	<u>ions:</u> D		<u>PES:</u> A: AUGE	r <u>tes</u>	<u>TS:</u> W.C.: W	ATER CONTENT (%)
			GOOD	SB: SPLIT	BARREL	T: T(ORVANE (TSF)
			LOST	S: SHEL	BY TUBE	V: IN	I-SITU VANE TEST (TSF)
		П	CORE SAMPLE	RC: ROCH	CORE	SIZE	
				SAM	PLES		Т
ELEV. (FT.)	(FT.)	S.P. I. BLOWS	MATERIAL DESCRIPTION	CON. N	D. REC. PE (%)	TESTS	REMARKS
	21_		Light Brown to		r 30	SB =	
		-3		<u> </u>			
	24						
	23-					-	<u> </u>
	24						- 16
	26		а. Х.			3	i i i i i i i i i i i i i i i i i i i
	24	6	Light Brown		0 30	SB	
	C.W.	9	Sana	111	0)0	2	
2	27-					-	4
-	20	4				-	
~	29-	- 19	8				
	2A					-	
		Ø	Brown Slightly Sil	+4 11+	60	CR -	-
	31-	1.0	Sand	141	1 1/0	30 -	
	32-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				_	<u> </u>
	22	14			9	_	
<i>.</i>	0.1	16				-	_
	34						
	35	5			-	to the second	Carrier Andrew
1	20-	6	Silty Brown Sa	NO / TI	7 50	SB -	1
	90	7			5		
	51-				2		
	38-		5. I				
	29_	1.1	1985 - A	A DECEMBER OF			
	16	-				-	
		0		17	<u>s</u> .		
	4	9	- areen to one	MVIIIN	2 195	SB_	
	111	STI	City	90/////	11.		11 19,000

-

						RANSPORTA	TION				FORM 675-020-12 MATERIALS		
				FIELD BO	RING	-06			s	HEET 1	OF 4		
	07.110			Aug and R'I	0 0	canvela		[Alex					
PROJE	CINO.	humok		TOWNEY CAST STI		Jereit C		Lane			_ 5		
POAD		Montpie				N				_ SECTION			
FOLIP	EQUIPMENT TYPE (ME-75 RIGNO. 26005 BORING NO. #5 (C-2)												
DATE S	DATE STARTED 9/14/2016 COMPLETED 9/14/2016 DRILLED BY Bruce/Kule												
LOGGE	D BY Do	iton /	forld	BORING TYPE:	A	JGER, WA	— SHED, PE	RCUSSION	, ROTA	ARY,			
		0.110	24 1100		C	ASED, UNC	ASED, D	RILLING MU	jd, _				
WATER	TABLE:	U HK	24 пкз	пкз									
SAMPL	E CONDIT	<u>ions:</u> D		D SAMPLE TYPES:	A: A	UGER	TES	<u>TS:</u> W.C.:	WAT	TER CONTE	NT (%)		
			GOOD		ŜB:) S		RREL	T:	TOR	VANE (TSF)			
5			LOST		S: 5	HELBY T	UBE	V:	IN-S	ITU VANE TI	EST (TSF)		
			CORE SAM	1PLE	RC: F	ock co	RE	SIZE					
				*				_					
ELEV.	DEPTH	S.P.T.	MATERIAI	DESCRIPTION		NO.	, REC.	TEST	s	REM	ARKS		
(F1.)	(F1.) 	BLOWS			CON.	TYPE	(%)						
, λ	\wedge		A 10		1 3/2	1	1			\cap	/		
(\land)		\sum	Ducy	Pown		\mathcal{N}	/ \		1				
	2-	1	Darr	Brown	71	an a		- 0	_				
	3-	2	Sa	nd	'	-1	30	SB	-				
ia.	4	20	Browny	O Dark Brown	114		0.0						
	5	2	Sah	d	$\left \right \frac{T}{T}$	2	30	SB					
	I	23	Tan to	Brown	$h_{\overline{T}}$	2	110	CO	_				
	0	3	2	Sand	44		70	315					
	7-	3	Sam	0	1/1	4	LIN	SR					
	-8-	4			444		10		_				
	a —	5	Sam	l	14	_ <u>15</u>	50	SB					
	10	4	-TAIN CO	ad will trave	111	And a	-						
		10	Of	Dranad Saw!	114	6	30	SB					
	11	4	tais		11	-	1 0	0.15					
	12_	r a	IAVI	Sand	11/14	/	00	SB					
	13-				·	_			-				
	14	1											
	15												
		7	Ruca IV	Fond	114	0	22	SD	-				
	16-	3	DIDOON		1/11	-8	30	OD					
	17-		5272			-			_				
	18-										(P)		
	19				_		<u>e</u>		_		14		
	20												
	20												

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION

111

FORM 675-020-12 MATERIALS 08/99

							S	SHEET <u>2</u>	OF	
PROJECT NO.			NAME		COUNTY			DISTRICT		
LOCATION			TOWNSH	IP	R	ANGE		SECTION		
							BORING	NO. #5	(C-2)	
DATE STARTED COMPLETED					DRILLED BY					
LOGGED BYBORING TYPE:					AUGER, WASHED, PERCUSSION, ROTARY,					
WATER	R TABLE:	0 HR	24 HRS HRS	C	ASED, UNC	ASED, D	RILLING MUD,		<u>.</u>	
<u>SAMPL</u>	<u>E CONDIT</u>	<u>ions:</u> D	DISTURBED SAMPLE TYPES:	A: A	UGER	TES	<u>TS:</u> W.C.: WA	TER CONTENT	· (%)	
			GOOD	SB: S		REL	T: TOF	RVANE (TSF)		
			LOST	S: S	HELBY T	UBE	V: IN-SITU VANE TEST (TSF)			
		Π	CORE SAMPLE	RC: F	ROCK CO	RE	SIZE			
-				SAMPLES						
ELEV. (FT.)	DEPTH (FT.)	S.P.T. BLOWS	MATERIAL DESCRIPTION	CON.	NO. TYPE	REC. (%)	TESTS	REMARKS		
	21-	-50 (U	Brown Slightly Silty	114	9	50	SB _	_		
a na mana ana ana ana ana ana ana ana an	22-		Junu	<u> </u>					. Ke	
		-								
	23									
	24				-					
-	25	······								
	24	5	tan sand w	V/τ_1	10	50	SB -			
	20-	7	Trace of Silt	111	10		2 -			
	27 —				-			<u> </u>		
	28-				<u> </u>					
	29_			_						
	2		σ.			- D.	8	7		
	50	4	Tan Cauld	11.						
	31-	7	Savid	14	-11	50	SB —			
-1.12.	27-									
	20							4		
	33									
<i>a</i> .	34			-	-			<u> </u>		
	25	0			 			1		
	210_	8	Slightly Silty Brown	/// <u>1</u>	10	40	00	1		
-		7	Sand	141-11	12	10	JD			
	37-									
	38-				—			 		
	24							1		
								4		
	10									
STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FORM 675-020-12 MATERIALS FIELD BORING LOG OF 408/99 SHEET S PROJECT NO. _____ NAME _____ _____ COUNTY _____ DISTRICT ____ TOWNSHIP _____RANGE _____SECTION ____ LOCATION SURFACE ELEVATION ROAD NUMBER RIG NO. _____ BORING NO. # 5 (C-2) EQUIPMENT TYPE DATE STARTED _____COMPLETED _____ DRILLED BY LOGGED BY _____BORING TYPE: AUGER, WASHED, PERCUSSION, ROTARY, CASED, UNCASED, DRILLING MUD, WATER TABLE: 0 HR. _____24 HRS. _____ HRS. _____ SAMPLE CONDITIONS: DISTURBED SAMPLE TYPES: A. AUGER TESTS: W.C.: WATER CONTENT (%) T: TORVANE (TSF) GOOD SB: SPLIT BARREL V: IN-SITU VANE TEST (TSF) LOST S: SHELBY TUBE RC: ROCK CORE _____ SIZE CORE SAMPLE SAMPLES ELEV. DEPTH S.P.T. MATERIAL DESCRIPTION TESTS REMARKS NO. REC. **BLOWS** (FT.) (FT.) CON. TYPE (%) -10 5 grey to green 8 SB 66 Sandy clay 12 2 47_ 43-111_ 215 4 66 SB 7 SAME 44 46 17_ 48-19. EA Q tan slightly silly 50 10 -15 SB 51-9 52-52. 54. 6 60 SB Same 10 5 66-57-

RECYCLED PAPER

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FIELD BORING LOG

FORM 675-020-12 MATERIALS , 1 408/99

	1	
SHEET	. 7	1

									SH	EET	OF <u>7</u>	
PROJE	CT NO.		NAME			C	OUNTY			DISTRICT		
LOCAT				TOWNSH	IP	R	ANGE			SECTION		
ROAD	NUMBER						SURFA	CE ELEVA	TION		0	
EQUIP	MENT TYP	'Е		RI	G NO.	D BORING NO. <u>#5 (C-2</u>)						
DATE S	TARTED		C	OMPLETED _		DRILLED BY						
LOGGE	D BY	<u>ke</u> (9)	BC	RING TYPE:	A	UGER, WA	SHED, PE	RCUSSION,	, ROTAF	RY,		
WATER	R TABLE:	0 HR	24 HRS	HRS	(ASED, UNG	CASED, DI	RILLING MU	D,			
SAMPL	E CONDIT	<u>TIONS:</u>		SAMPLE TYPES	A:	AUGER	TES	<u>TS:</u> W.C.:	WATE	ER CONTENT	(%)	
	S. 1		GOOD		SB:	SPLIT BAI	RREL	T:	TORV	/ANE (TSF)	8	
1.5	7	-55	LOST		S	SHELBY T	UBE	V:	IN-SI	TU VANE TES	T (TSF)	
1997 - 6				:	DC.		DE	SIZE				
					RU.				r			
ELEV.	DEPTH	S.P.T.		SCRIPTION		SAMPLES	5	TEQTO		DEMAR	ok c	
(FT.)	(FT.)	BLOWS			CON.	NO. TYPE	REC. (%)	12013		REWAR	C/IV	
	60	4	\mathcal{C} $\mathcal{A}_{\mathcal{A}}$		114		E.C.	60				
	6)—	5	Dakn	U	V/H	1-1	00	SK	+			
	107-											
	102				_	1			_			
					_				-			
	64-								\pm			
	105-	2			7.7			-				
	Lala	5	Same		$1/\underline{T}$	10	50	SR				
	100	5	Q • • •		61_1	.0	50	0.7				
	W /				-				1			
	108					+	1		+			
	69-					1			7			
	70											
		57	Could		V/\neq	1 G	50	CD	-			
	-11-	8	Jawre		11	4.1	50	DR				
					[′]	+			+		10	
					_	1			1			
					-							
					_							
					-							
	_					—			7			
						1						
					50A -	4			_			
	-											
					-	+-			\rightarrow			
								_				
				<u>.</u>								

.e.k

				STATE OF FLORIDA DEPAR			FION				FORM 675-020-12 MATERIALS
				FIELD BC	JRING L	JUG			SF		OF 4
			NAME	Aunou cash	Pile	Research		Love	1		
LOCATI	ON AK	ahumoi	ca. FL	TOWNSH	IIP	0	ANGE			SECTION	
ROAD	UMBER						SURFA	CE ELEVA	TION		
EQUIPN	IENT TYP	E CILE	- 75	RI	G NO. 🦯	2600	5	BOR	ING N	10. <u>#16</u>	(T-2)
DATE S	TARTED	9/14/17	2016	COMPLETED	9/14/2	010	_ DRILI	ED BY	Bri	we / Ky	le
LOGGE	DBY To	odd /D	alt-on	BORING TYPE:	A	JGER, WAS	SHED, PE	RCUSSION,	ROTÁ	RY	
WATER	TABLE:	0 HR	24 HRS	HRS		ASED, UNC	ASED, D	RHULING MO	^{D,} –		
SAMPL	E CONDIT			SAMPLE TYPES	· · • •		TES	<u>TS:</u> WC	WAT		NT (%)
				D			REI	T:	TOR	VANE (TSF)	(,,,
					<u>o</u> , c			V:	IN-SI	TU VANE TE	EST (TSF)
		— – n	CORE SAM	PIF	RC' F		RF	SIZE			
					T				T		
ELEV.	DEPTH	S.P.T.	MATERIAL	DESCRIPTION		NO.	REC.	TEST	5	REM	ARKS
(F1.)		BLOWS	1		CON.	TYPE	(%)				an he
1 6	[0]	1 101	Dua Di	own	1 []		0	1 0		1	0 7
L	~	XY	party p			A	\bigwedge	$\$		L	\mathcal{N}
	1	3	Dave Bro	why sand	11fr	1	20	CD.	-		
	3-				1/11		20	SB			
	L.	2	tan to	Brown	It	- 2	20	SB			
	5	ろつ		and		a			-		
	6	4	50	me	1/74	_3	40	SB		<u></u> **	Sec.
	-1	24	Browny	G Dark	71		60	00			
	0	2	Brown	sand	11-1-	7	90	SB		N	
	0	C6 16	Dank Br	own spind	1/1-	5	50	SB			
	1-	3		1	177		20	00		×	
	10	22	San	20	111.	6	50				
· ····		Z			1/1/		~	1			
	12-					-1		N.	-		
n go min	13-				_						,,-
No. 6	12/	8						8 X			1 1734. 1
	1.1								_	P ^r	R.
	1	1	Brown	to park	1/+	7	10	CP			
	16-	1	Brown	Sang	1/11		20	20	_		*
	17-		~						<u>_</u>	- 1.	200
	18-				-	-		5		<u> </u>	N. CAR
	19-					 _			_	2	
	26					1 ¹		-			
				2 - Contraction (1997)	See	L	L				

RECYCLED PAPER

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FIELD BORING LOG

FORM 675-020-12 MATERIALS 08/99

-

									SHE	
PROJE			NAME			C	OUNTY	. <u></u>		DISTRICT
LOCATI	ON	an de l'an		TOWNSHI	P	R	ANGE _			SECTION
ROAD	NUMBER	· · · · · · · · · · · · · · · · · · ·		9-			SURFAC	CE ELEVAT	TION	
EQUIPM	IENT TYP	E		RIG	NO			BORI	NG NO	$\pm 6(1-2)$
DATE S	TARTED		COMPL	ETED			_ DRILL	ED BY		
LOGGE	D BY		BORING	TYPE:	AL	IGER, WAS	SHED, PE	RCUSSION,	ROTAR	Y,
WATER	TABLE:	0 HR	24 HRS HR	S	C4	SED, UNC	ASED, DF	ILLING MUL), <u> </u>	
SAMPL	E CONDIT	<u>ions:</u> D	DISTURBED SAMPL	E TYPES:	A: A	UGER	TEST	<u>'S:</u> W.C.:	WATE	R CONTENT (%)
			GOOD		SB: S	PLIT BAF	REL	T:	TORV	ANE (TSF)
			LOST		S' S	HELBY T	UBE	V:	IN-SITI	U VANE TEST (TSF)
								SIZE		-
					RU: R			_ 0.20		
ELEV.	DEPTH	S.P.T.				SAMPLES	3	TEATA		
(FT.)	(FT.)	BLOWS	MATERIAL DESCRIP	HON	CON.	NO. TYPE	REC. (%)	IESIS		KEWAKKS
	26	2	Browin Sha	atic.	11	6	(10)	0.0		
	21	3	Silter San	d	1H	_8	40	SB	7	_
	22	<u> </u>		<u></u>	·/ <u>//</u>					_
	2-								-	
	17								1	-
	24				discourse in the					-
	16									
	20	4	C alla a A	2	71+	Q	TA	C 12		
	210-	5	Same		1/1/		50	38		_
	27			4	·					-
	18								1	_
	10		2						-	
	29-									
-	30	5	011,11,601,11,	104	111	and date	1.			
	-21	7	Slight V Silty	Inn	11/12	0	4R	SB	ユ	_
	/1	8	- JUIN 9	6	<u> </u>	k	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- La ar	
	35							19	\square	
	33-			24					+	
	24								_	
	51		2			2 			-	
WW Science and Augustano, or April	- 55	4	Light Brown s	Slightly	711		12	0.5		
	240	5	Silty Sand		114	-11	50	SB	+	_
a her geven men et an er er	2-1		1							
	51								_	,
	36								\pm	
	39								-+-	
	111							_	1	fis -
	10									

RECYCLED PAPER

1

96

TAR

			STATE OF FLO			TION		×	FORM 675-020-12 MATERIALS
			FI	ELD BURING	LUG			SHEET 2	OF 4
			NAME ALLOS	cast bile	C	OUNTY			——————————————————————————————————————
LOCATI	ON			OWNSHIP	0 R	ANGE		SECTION	1
ROAD	UMBER		Con	\cap		SURFA	CE ELEVATIO	N	
EQUIPN	IENT TYP	E	N/V/	V RIG NO.				GNO. <u>#10</u>	17-2)
DATE S	TARTED		COMPLE	TED			ED BY		
LOGGE	D BY		BORING T	YPE:	AUGER, WA	SHED, PE	RCUSSION, RC	TARY,	×
WATER	TABLE:	0 HR	24 HRS HRS	S	CASED, UNC	CASED, DF	RILLING MUD,	3	
<u>SAMPL</u>	E CONDIT		DISTURBED SAMPLE	<u>E TYPES:</u> A	AUGER	TEST	<u>rs:</u> w.c.: w	ATER CONTE	ENT (%)
		E	GOOD	SB:	SPLIT BAR	RREL	T: TC	ORVANE (TSF	
			LOST	S:	SHELBY T	UBE	V. IN	-SITU VANE I	EST (13F)
			CORE SAMPLE	RC:	ROCK CO	RE	SIZE		
	DEDTH	SPT			SAMPLES	S			
(FT.)	(FT.)	BLOWS	MATERIAL DESCRIPT	ION CON	NO. TYPE	REC. (%)	TESTS	REN	/ARKS
	цI	67	Same	1/4	17	20	SB -		
	(1)	7		/_/	1 14				
	42			=	-		a 1	-	
	43						_		
	44		2		-		_	+	
	45	E							
	46-	7	grey to green	//Z	43	$\left(0\right)$	SB I	1	
	47_	Q	CIUY	<u> </u>			An and the operation of the transmission of transmission of transmission of the transmission of transmission of transmission of the transmission of transmission o		
	113			-	-			-	
	48-				1			-	
	49-								
	50	5		777	1				· · · · · · · · · · · · · · · · · · ·
	51-	6	Same	· //Ź	744	60	SB-	-	
	57	0		/	4	Q			-
	52				-		· · ·	-	
	09				-				
	54-			_					
	55	-7		111					
	56	9	Slightly Silt ta	VI Sand	7-15	60	SB -	7-	
	57-			and a second				-	
	58-				4			4_	
	50			-			-	_	
	57			194			-		
	V3	1	·						

RECYCLED PAPER

STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION FIELD BORING LOG

FORM 675-020-12 MATERIALS

PROJE	CT NO.		NAME		C	STRICT					
LOCATI			TOWNS		R	ANGE		SI			
ROAD	NUMBER		Salli	\mathcal{D}		SURFA	CE ELEVA				
EQUIP	MENT TYP	Ε	Y	AIG NO BORING NO. #16 (T-							
DATE S	TARTED	1	COMPLETED	-		_ DRIL	LED BY	N. E.	1		
LOGGE	D BY		BORING TYPE:		AUGER, WA	SHED, PE	RCUSSION,	ROTARY,			
	1				CASED, UNG	CASED, D	RILLING MUI	D,			
WATER	TABLE:	UHR	24 HRS HRS								
SAMPL	E CONDIT	IONS: D		<u>S:</u> A.	AUGER	TES	<u>TS:</u> W.C.:	WATER	CONTENT (%)		
		6		CD.	COLITION	ססבו	T:	TORVAN	IE (TSF)		
			GOOD	58.	SPLIT BAR	KEL	V:	IN-SITU	VANE TEST (TSF)		
			LOST	S:	SHELBY T	UBE					
		L	CORE SAMPLE	RC:	ROCK CO	RE	SIZE				
			а		SAMPLE	S					
ELEV.	DEPTH (FT)	S.P.T. BLOWS	MATERIAL DESCRIPTION		NO.	REC.	TESTS	;	REMARKS		
()					· TYPE	(%)			÷		
	1	Le .	Clichtly Cilly fon Gan	dV/A	11	16	CP	_			
	61-	7	Slightly stiff this set	1//+	140	60	2P				
No.8	107-		Ų	-			64	*			
1 de la	100			-	11	12					
	02				1999 - A.						
	let-			-	+-						
	4.1	5	C	1/4	1 1-7	1	00				
	66	B	Daville	1/7	4+1	50	JR	<u> </u>			
	10-										
	1.6	X		-	-						
	40										
	169-			-	+						
_											
	10	34	Sama	XII+	- 10	70	CZ				
		6	June	1/17	10	10	212				
	11-		EOB 71,5'	_		× .					
				-	3			-			
		, 14 ¹ 0;						1			
2		10.000		-	+			-+-	1. A.		
		1:318					_		93		
		1000		-	_						
				-			-	7000			
				=							
20		10			-						
2					- · · ·						
				1	`	1					
		STO					_				
100		111		18 C							

RECYCLED PAPER

Appendix D

Manual Grout Logs

700-011-03

Construction

Auger Cast-In-Place Pile Installation Record **C1** Worksheet 01/16 PROJECT: Page: 1 Comments: FP ID Number 86 166 18" Compression Test Pile Number / ID: C1 DFI Research Project Okahumpka FL Project Descr.: Pile Location: Contractor: DFI ACIP Pile Committee Installation Date: 10/27/16 Structure No./ID Test Area Clay Davis Inspector (s): THEORETICAL: calculated OGF Vol. & Strokes THEOR. PUMP 100% Vol. 5.00 PUMP CALIBRATION Segment / Incr. VOL. Segment Length (ft): OGF (%) (cu ft) STROKES (cu ft) Reduced OGF (Top 5 ft Segment only): 1.05 VOLUME of Container (cu ft): 5.50 Length (ft) 1 ft INCREMENT: 2.03 3 1.77 Overgrout Factor OGF (Below 5 ft depth): 1.15 STROKES to Fill Cont. (strokes): 7 115 Min. Reg'd Grout Head (ft) 5.00 PUMP CAL (cu ft/stroke): 0.79 5 ft *SEGMENT(s): 8.84 Theor. Initial Pump Count (strokes): 10.16 13 12 5 ft Top SEGMENT: 105 9.28 12 8.84 Pressure Gage Location (descr.): PILE Vol. & Stroke TOTALS: 121.05 155 106.03 Grout Design Strength (psi): 6000 Design Capacity 220 tons Qty of (11) full 115%-OGF, 5-ft segments, in this 60-ft pile [below the top (1) 5-ft Reduced OGF segment] INSTALLATION DATA Actual Pile Length (ft) & Segment Length (ft) input complete 141 00 Plan Top Elev. (ft, NGVD): Table rows for the Pile & Segment Lengths input complete Р 60.00 Table input of the table PUMP COUNT data, for the bottom/1st lift is complete Plan Length (ft): F Plan Tip Elev. (ft, NGVD): 81.00 Actual Pile Diameter = Plan Pile Diameter, meets 455 spec Ν Е Plan Dia. (ft): 1.50 Flow Cone Test, FAILED (Consistency < 21 sec) Е GSE (ft, NGVD): 140 00 D Note: ACTUAL initial pump count OK, > or = THEORETICAL (Min. Req'd Grout Head) В Drilling START (time): 9:45 AM Actual Grout volume placed is OK. All incr. segments are > or = the min. Theoretical OGF volume req'd A Auger Rate (rpf): Grout Return > or = the 'Min. Reg'd Grout Head' (5 ft) input above D С B Drilling FINISH (time): 9:52 AM Reinforcement Placement Time, 10 min, meets 455 spec limit (< or = 30 min). Κ Drilling TIME (min.): Follow-up to verify the Grout meets the Minimum Required Strength 7 L Actual Pile Dia. (ft): 1.50 141.00 Actual Pile Top Elev. (ft, NGVD): G GROUT VOLUMES Overburden Length (above Plan Top) (ft): n/a Type of PUMP COUNT input = 'INCREMENTAL': T Actual Pile Length (below Pile Top)(ft): 60.00 DEPTH (ft) GROUT PUMP COUNT INCREMENTAL SEGMENT SOIL ACCRUED Actual Tip Elev. (ft, NGVD) 81.00 ACCRUEE Actual EL INCR Actual Cond. Pressure Theor. Below Top of D Plant No.: 1 or 2 Concr. Trucks (ft, NGVD) (SUM) % Theor. S, M, or H (psi) (Per 5 ft) (cu ft) (cu ft) (cu ft) Тор Segment R T2 Start Depth (ft): 2nd Truck 1st Truck 0 (Pile TOF 141.00 Soil Cond .: Start input at Pile TOP, Grout Pump Count: start input at Pile BOTTOM T 5 0 Delivery Ticket No .: 41401202 41401201 136.00 185 13 178 8.84 10.21 116 % 139.86 L Batch (time): 8:23 AM 8:20 AM L 10 5 10.21 129.64 131.00 185 13 165 8.84 116 % Т 9:16 AM 8:43 AM 15 10 126.00 152 11.00 124 % 119.43 Arrive (time): 185 14 8.84 Ν Flow Cone Test (sec): 15 18 20 15 121 00 185 13 138 8.84 10.21 116 % 108.43 G Grout Temp. (ºF): 25 20 116.00 185 13 125 8.84 10.21 116 % 98.21 G Grout Cylinders LOT (ID): & 111.00 124 % Sample 4 30 25 185 14 112 8.84 11.00 88 00 0 9.54 AM 9:52 AM Placement START (time): 35 106.00 185 124 % 77 00 30 14 98 8.84 11.00 G Starting Pressure (psi): 185 185 40 35 101.00 185 13 84 8.84 10.21 116 % 66.00 R 45 96.00 Actual Initial Pump Count (strokes) 13 40 185 71 8.84 10.21 116 % 55.79 13 0 Auger Depth @ Grout Return (ft): 10.0 50 45 91.00 185 13 58 8.84 10.21 116 % 45.57 U Truck Empty (time): 9:54 AM Т 55 50 86.00 185 14 45 8.84 11.00 124 % 35.36 Т 9:55 AM 9:54 AM Placement FINISH (time): 60 55 81.00 185 31 31 8.84 24.36 276 % 24.36 Ν Placement TIME (min.): 1 2 G Mixer TIME (min.): 94 Reinf. Condition Satisfactory? (Y or N): v Т S Α Reinf. Placement START (time): 9:55 AM E В 10:05 AM Е Reinf. Placement FINISH (time): L L Reinf, Comments: #11 Centerbar - 8x#8 Cage x 35 ft Е Check GROUT STRENGTH TESTING Results T E Does the Grout Meet the 1st Truck 2nd Truck S T Minimum Required Stength? () Pile BOTTOM @ depth = 60 ft 6650 178 106.03 132 % 139.86 or N) Comments: Total Pump Strokes Total Theor. Vol. (cf) Actual (cf) Actual/Theor. (%) Actual Curve Auger Cast Pile - Grout Curves ----- Theoretical Curve 70 **GROUT VOLUME PLACEMENT RESULTS** 60 % THEORETICAL ACCEPTANCE VOLUMES (cu ft) SEGMENT Actual Theor. OGE % Theor. Min. % Descr € ⁵⁰ P/F % Over Vol Actual/Theorem Placed Placed % କ୍ରି 40 TOP 5-ft 10.21 116 % 116 % Pass 8.84 105 11 % (bottom 05 BELOW 5-ft 116 % 129.64 97.19 115 133 % Pass 18 % Total Pile 139.86 106.03 114 132 % Pile Pass/Fail: Pass Depth 50 FINAL ACEPTANCE **Pile Not Yet Accepted** 10 Accepted or Rejected ? (input "A" or "R") Pile Acceped or Rejected (date):

20

100

Comments:

40

60

80

Grout Volume (cu ft)

100

120

140

160

Florida Department of Transportation

Grout Volume (cu ft)

700-011-03 Construction

Auger Cast-In-Place Pile Installation Record

Florida Department of Transportation

					4	uger	Jast	-in-Plac	e Pile Vorksh	e instai <mark>eet</mark>	lation	Recora			C2		C	01/16
PROJECT:								Comments:									Pag	je: 1
FP ID Number:	86	6 166						24" Compres	sion Test				Pile Numbe	er / ID:	C2			1
Project Descr.:	DF	-I Resea	arch Pr	oject									Pile Locatio	on:	Okahum	pka FL		
Contractor:	DF	I ACIP	Pile Co	ommittee									Installation	Date:	10/27/16	;		
Structure No./ID	: Te	est Area											Inspector (s):	Clay Day	/is		
THEORETIC	AL: calcu	lated OG	F Vol. &	Strokes	THEC	DR.												
Segment / I	Incr.	OGF	VOL.	. PUMP	100%	Vol.	Segme	nt Length	(ft):			5.00)		PUMP	CALIBRAT	ION	
Length (f	ft)	(%)	(cu ft) STROKES	(cu t	t) 😐	Redu	iced OGF (Top 5 ft S	egment or	ıly):	1.05	<u></u> , γ	/OLUME o	f Containe	r (cu ft):		5.50
1 ft INCREM	IENT:		3.61	5	3.1	4	Over	grout Facto	r OGF (B	elow 5 ft d	epth):	1.15	5 5	STROKES	to Fill Cont.	(strokes):		7
		115					Min.	Req'd Gro	ut Head	(ft):		5.00) F	PUMP CAL	. (cu ft/stro	ke):		0.79
5 ft *SEGMEI	NT(s):		18.06	6 23	15.7	'1 I	Theo	or. Initial Pu	mp Cour	nt (strokes):	20						,
5 ft Top SEGN	IENT:	105	16.49	9 21	15.7	'1 I	Pressu	re Gage Lo	ocation (descr.):								
PILE Vol.	& Stroke T	TOTALS:	215.2	274	188.	50	Grout D	Design Stre	ngth (ps	i):		6000)	Design Ca	apacity:	2	85 tons	
* Qty of (11) full 1	115%-OGF,	5-ft segme	ents, in thi	is 60-ft pile [b	elow the top	(1) 5-ft R	educed	OGF segme	nt]									
Dian Tan Ci	INS I		ION I		141.00		Act	tual Pile Ler	ngth (ft) &	Segment	Length (ft)	input comp	lete.					
Plan Top El	iev. (π, iNC	avD):			60.00		Tal	ble rows for	the table		Lengins ir	for the bett	le. http://www.com/dict.lift.io.	complete				
A Plan Tin Ele	1 (11).			L	81.00		F	tual Pilo Dia	meter - F	Plan Pile D	iameter m	loots 455 sr		complete.				
N Plan Dia (f	ft). (II, NG	VD).		Г	2 00			w Cone Te	st FAII FI	D (Consist	encv < 21	sec)						
GSE (ft N	IGVD).				140.00			te: ACTUA	L initial p	ump count	$OK_{\cdot} > or =$	= THEORE1	ICAL (Min.	Rea'd Grou	t Head)			
Drilling STA	ART (time)):		F	12:07 P	M	B Act	tual Grout v	olume pla	aced is OK	. All incr. s	egments ar	e > or = the	min. Theor	retical OGF	volume red	q'd.	
D Auger Rate	(rpf):						A Gro	out Return	> or = the	'Min. Req	'd Grout He	ead' (5 ft) i	nput above.					
R Drilling FINI	ISH (time)	:			12:14 P	M	C Re	einforcemer	t Placem	ent Time, ⁻	13 min, me	eets 455 spe	ec limit (< o	r = 30 min)				
	E (min.):			L	7	<u> </u>	Fo	ollow-up to v	erify the (Grout mee	ts the Minir	num Requir	ed Strength	L.				
L Actual Pile I	Dia. (ft):			Γ	2.00													
N Actual Pile	Top Elev.	(ft, NGVI	D):		141.00													
G Overburden	n Length (a	above Pla	n Top) (ft):	n/a			Туре	of PUMP	COUNT inpu	t = 'INCRE	MENTAL' :	Ι			GROUT V	OLUMES	
Actual Pile I	Length (be	low Pile	Top)(ft):		60.00			DEPTH	(ft)	SEGMENT	SOIL	GROUT	PUMP	COUNT	IN	CREMENTA	L	ACCRUED
Actual Tip E	Elev. (ft, N	GVD):			81.00			Below	Top of	EL	Cond.	Pressure	INCR.	ACCRUED	Theor.	Act	Jal	Actual
Plant No.:			1 or 2 C	oncr. Trucks:	2		R —	Top -	Segment	(ft, NGVD)	S, M, or H	(psi)	(Per 5 ft)	(SUM)	(cu ft)	(cu ft)	% Theor.	(cu ft)
T2 Start De	epth (ft):		2nd Ti	ruck	1st Truc	:k	I	0 (F	Pile TOP)	141.00	Soil C	Cond.: Start	input at Pile	FOP, Grout I	Pump Count	: start input	at Pile BO	
Delivery Tic	ket No.:		41401	209	4140120	6		5 -	0	136.00		185	32	348	15./1	25.14	160 %	2/3.43
Batch (time	e):	_	10:40	AM	9:48 AN	/		10 -	5	131.00		185	29	316	15./1	22.79	145 %	248.29
Arrive (time	e): Taat (aaa)		11:20	AM	10:11 A	VI	N	15 -	10	126.00		185	37	287	15./1	29.07	185 %	225.50
Grout Tomp			10)	17		G	20 -	10	121.00		100	20	250	15./1	20.43	130 %	190.43
G Grout Cylind	lers IOT (יוסוי	Samo	le 7			e	30 -	20	111.00		185	32	196	15.71	25.00	140 %	154.00
O U Placement	START (tin	ne).	12.20	PM	12·14 P	M	<u>م</u>	35 -	30	106.00		185	25	164	15.71	19.64	125 %	128.86
T Starting Pre	essure (ps	i):	18	5	185	••	G	40 -	35	101.00		185	23	139	15 71	18.07	115 %	109.21
Actual Initia	I Pump Co	ount (stro	kes):	-	22		R	45 -	40	96.00		185	24	116	15.71	18.86	120 %	91.14
Auger Depth	n @ Grout	Return (ft):		8.0		U	50 -	45	91.00		185	23	92	15.71	18.07	115 %	72.29
Truck Empt	ty (time):				12:20 P	M	T	55 -	50	86.00		185	24	69	15.71	18.86	120 %	54.21
Placement I	FINISH (tim	ne):	12:22	PM	12:20 P	N	1	60 -	55	81.00		185	45	45	15.71	35.36	225 %	35.36
Placement	TIME (mir	า.):	2		6		N G	-										
Mixer TIME	(min.):				152		<u>۲</u>	-										
S Reinf. Cond	dition Satis	factory?	(Y or N)	:	Y		Т	-										
F Reinf. Place	ement STA	ART (time	e):		12:22 P	M	A	-										
E Reinf. Place	ement FINI	ISH (time	e):		12:35 P	M	L	-			L	-		 				
- Reinf. Com	ments:	#11	Center	bar - 12x#8	Cage x 35	π	E	-						+				
E Does the (Grout Meet	the	2nd T	TESTING	Results	k		-										
S Minimum Rec	quired Steng	gth? (Y	2110 11	70	ist nuc				M @ denti	h - 60 ft			249		199 50		145 %	272 42
Comments:	Jrini).		007	0					in @ depti	1 = 00 h		Total Pur	np Strokes	Total The	or. Vol. (cf)	Actual/Th	eor. (%)	Actual (cf)
								-							(- /			
								-		Δυσοι	Cast Pi	le - Grou	it Curves		<u>_</u> _A	ctual Curve		
<u> </u>								70	1	Auger	Oastri			2	•T	neoretical C	urve	
	GROUT	VOLUM	IE PLA	CEMENT	RESULTS	5		<u>ו</u> ך										
	VOLUME	S (cu ft)	%	6 THEORET	ICAL	ACCEP	TANCE	60						/				
SEGMENT Descr.	Actual	Theor.	OGF	% Theor.	%	Min. %	D/F	, 50								-		
	Placed	Vol.	%	Actual/Theor	% Over	Placed	P/F								-			
TOP 5-ft	25.14	15.71	105	160 %	55 %	160 %	Pass	g 40										
BELOW 5-ft	248.29	172.79	115	144 %	29 %	115 %	Pass	30 Itou	1									
Total Pile	273.43	188.50	114	145 %	Pile P	ass/Fail:	Pas	(pc										
								02 te			/ /							
FINAL	ACEPTA	NCE		Pile	Not Yet Ac	cepted		- 10	1		\langle							
Accept	ed or Reje	cted? (i	input "A'	" or "R"):														
Commente	e Acceped	or Rejec	ied (dat	e):				0	0	50)	100	15	0	200	25	50	300

101

Comments:

Grout Volume (cu ft)

700-011-03
Construction

~ ~	1.4	-

Florida Department of Transportation Auger Cast-In-Place Pile Installation Record

				А	uger	Cas	t-in-Pia	Ce Pil	e instai heet	lation	Record	1		T1		,	01/1
PROJECT:							Comments	:								Pa	ge: 1
FP ID Number:	86 166						18" Tensior	n Test				Pile Numb	per / ID:	T1			
Project Descr.:	DFI Re	search l	Project									Pile Locat	ion:	Okahun	Okahumpka FL		
Contractor:	DFI AC	IP Pile (Committee									Installation	n Date:	10/27/1	ô		
Structure No./ID:	Test A	rea										Inspector	(s):	Clay Da	vis		
THEORETICA	L: calculated	OGF Vol.	& Strokes	THEC	DR.												
Segment / In	cr. OG	iF VC	DL. PUMP	100%	Vol.	Segm	ent Length	(ft):			5.0	0		PUMP	CALIBRA	TION	
Length (ft)	(%) (cu	ft) STROKE	s (cu f	t)	LL Red	luced OGF	(Top 5 ft	Segment or	ily):	1.0	5	VOLUME	of Containe	er (cu ft):		5.50
1 ft INCREME	INT:	2.0	03 3	1.7	7	O Ove	ergrout Fact	or OGF (I	Below 5 ft de	epth):	1.1	5	STROKES	to Fill Cont	. (strokes):		7
	11	5				og Mir	. Req'd Gr	out Head	(ft):		5.0	0	PUMP CA	L (cu ft/str	oke):		0.79
5 ft *SEGMEN	T(s):	10.	16 13	8.8	4	I The	or. Initial F	ump Cou	unt (strokes):	12						
5 ft Top SEGM	ENT: 10	5 9.2	28 12	8.8	4	Press	ure Gage L	ocation	(descr.):								
PILE Vol. &	Stroke TOTA	LS: 121	.05 155	106.	03	Grout	Design Str	ength (p	si):		600	0	Design C	Capacity:	2	205 tons	
* Qty of (11) full 11	5%-OGF, 5-ft se	egments, in	this 60-ft pile []	below the top	(1) 5-ft	Reduce	d OGF segm	ent j									
	INSTALL	ATION	DATA	1 4 1 0 0		A	ctual Pile L	ength (ft)	& Segment	Length (ft)	input comp	olete.					
Plan Top Ele	v. (ft, NGVD):			141.00			able rows to	or the Pile	& Segment	Lengths Ir	nput comple	ete.					
A Dian Tin Flam	(π):		L	60.00		F	able input o	t the table		UNI data,	for the bot		s complete.				
N Plan Tip Elev	. (π, NGVD):		F	1.00		E			Plan Plie D	ameter, m	ieels 455 s	pec.					
				140.00		E	oto: ACTU						Dogld Cro	ut Hood)			
	T (time):			10.10 /	M	B	otual Grout	n⊑ initial β	Jaced is OK	All incr -						ad	
	(rof):			10.19 AI	VI	A	rout Return			· 제미미미. S	ead' (5 ff)	innut about	e miti. Tried	Jieucai UGI	volume re	ч и.	
B Drilling FINIS	(ipi). H (time):			10.28 1	M	C	Reinforcem	> or = tr	nent Time		455 erc	ac limit (< o	$\sim -30 \text{ min}$				
I Drilling TIME	(min).		L	9	VI	K	rout meets	the Minim	um required	d Strength	513 400 Spe		- 50 mm)	•			
L Actual Pile Di	(mm.).		Г	1 50					lamrequires	l ou oligin.	•						
N Actual Pile To	nn Flev (ft N	GVD).		141.00													
G Overburden I	Length (above	Plan Top) (ft):	n/a			Tvi	e of PUMP	COUNT inpu	t = 'INCRE	MENTAL' :	T			GROUT		3
Actual Pile Le	enath (below F	Pile Top)(f	r) ·	60.00			DEPTH	ft)	SEGMENT	SOIL	GROUT	PUMP	COUNT	11		AL	ACCRUE
Actual Tip Ele	ev. (ft. NGVD):	.,.	81.00			Below	Top of	EL	Cond.	Pressure	INCR.	ACCRUED	Theor.	Ac	tual	Actual
Plant No.:		1 or 2	2 Concr. Trucks:	1		D	Top -	Segment	(ft, NGVD)	S, M, or H	(psi)	(Per 5 ft)	(SUM)	(cu ft)	(cu ft)	% Theor.	(cu ft)
			L	1st Truc	k	R =	0	(Pile TOP)	141.00	Soil (Cond.: Start	input at Pile	TOP, Grout	Pump Coun	t: start inpu	t at Pile BO	TTOM.
Delivery Tick	et No.:	T	Π	4140120	2	 L	5 -	0	136.00		185	18	188	8.84	14.14	160 %	147.7
Batch (time)		1	I	8:23 AN	1	Ē	10 -	5	131.00		185	18	170	8.84	14.14	160 %	133.5
Arrive (time)	:			9:16 AN	1	I.	15 -	10	126.00		185	14	152	8.84	11.00	124 %	119.4
Flow Cone To	est (sec):			15		N	20 -	15	121.00		185	13	138	8.84	10.21	116 %	108.4
G Grout Temp.	(ºF):					G	25 -	20	116.00		185	13	125	8.84	10.21	116 %	98.21
R Grout Cylinde	rs LOT (ID):			Sample	5	&	30 -	25	111.00		185	14	112	8.84	11.00	124 %	88.00
U Placement S	TART (time):			10:28 AI	M		35 -	30	106.00		185	14	98	8.84	11.00	124 %	77.00
T Starting Pres	sure (psi):			185		G	40 -	35	101.00		185	13	84	8.84	10.21	116 %	66.00
Actual Initial	Pump Count	(strokes):		13		R	45 -	40	96.00		185	14	71	8.84	11.00	124 %	55.79
Auger Depth (@ Grout Retu	Irn (ft):		5.0		U	50 -	45	91.00		185	13	57	8.84	10.21	116 %	44.79
Truck Empty	(time):			10:32 Al	M	T	55 -	50	86.00		185	14	44	8.84	11.00	124 %	34.57
Placement FI	NISH (time):			10:32 Al	M	I ***	60 -	55	81.00		185	30	30	8.84	23.57	267 %	23.57
Placement TI	IME (min.):			4		N	-										
Mixer TIME	(min.):			129		G	-										
S Reinf. Condit	ion Satisfactor	y? (Y or	N):	Y		Т	-										
T Reinf. Placen	nent START (time):		10:32 Al	M	Α	-										
E Reinf. Placen	nent FINISH (time):		10:37 Al	M	B	-									:	
L Reinf. Comm	ents:		3" Centerba	ar			-										
T Check	GROUT ST	RENGT	H TESTING	Results			-										
E Does the Gi	rout Meet the	/		1st Truc	k		-										
T or	N):	1		6910		· ·	Pile BOTT	OM @ dep	oth = 60 ft			188		106.03		139 %	147.7
Comments:											Total Pu	ump Strokes	Total The	eor. Vol. (cf)	Actual/T	heor. (%)	Actual (c
									Auger	Cast Pi	ile - Gro	ut Curve	S		heoretical C	Curve	
[7	0									
G	ROUT VOL	UME PL	ACEMENT	RESULTS	3		6	0									
SEGMENT	VOLUMES (cu	ı ft)	% THEORE	FICAL	ACCE	PTANC	E									~	
Descr.	Actual The	or. OG	F % Theor.	% Over	Min. 9	6 Р/	F =	0							\checkmark		
-	Placed Vo	I. %	Actual/Theo	r	Place	d											
TOP 5-ft	14.14 8.8	4 105	5 160 %	55 %	160 %	S Pa	S 154	U									
BELOW 5-ft	133.57 97.	19 115	5 137 %	22 %	116 %	Pa	s Ito	0									
Total Pile	147.71 106.	.03 114	139 %	Pile P	ass/Fai	I: Pa	ss (pc										
							epth	0									
FINAL A	CEPTANCE		Pile	Not Yet Ac	cepteo	1	1	o 📕									
Accepted	d or Rejected	? (input "	'A" or "R"):														
Pile	Acceped or R	ejected (d	iate):					0	20	40) F	10 10	100	120	140	160

102

Comments:

700	-01	1	-03

Construction

01/16 1

5.50

7

0.79

ACCRUED

Actual

(cu ft)

254.57

228.64

205.86

187.79

168.93

150.86

132.00

113.93

95.86

77.79

59.71

40.86

254.57

Actual (cf)

Florida Department of Transportation Pile Number / ID: Auger Cast-In-Place Pile Installation Record **T2** Worksheet PROJECT: Page: Comments FP ID Number 86 166 24" Tension Test Pile Number / ID: T2 DFI Research Project Okahumpka FL Project Descr.: Pile Location: Contractor: DFI ACIP Pile Committee Installation Date: 10/27/16 Structure No./ID Test Area Clay Davis Inspector (s): THEORETICAL: calculated OGF Vol. & Strokes THEOR. PUMP 100% Vol. 5.00 PUMP CALIBRATION Segment / Incr. VOL. Segment Length (ft): OGF (%) (cu ft) STROKES (cu ft) Reduced OGF (Top 5 ft Segment only): 1.05 VOLUME of Container (cu ft): Length (ft) 1 ft INCREMENT: 3.61 5 3.14 Overgrout Factor OGF (Below 5 ft depth): 1.15 STROKES to Fill Cont. (strokes): PUMP CAL (cu ft/stroke): 115 Min. Req'd Grout Head (ft): 5.00 5 ft *SEGMENT(s): 15.71 Theor. Initial Pump Count (strokes): 18.06 23 20 5 ft Top SEGMENT: 105 16.49 21 15.71 Pressure Gage Location (descr.): PILE Vol. & Stroke TOTALS: 215.20 274 188.50 Grout Design Strength (psi): 6000 Design Capacity 265 tons Qty of (11) full 115%-OGF, 5-ft segments, in this 60-ft pile [below the top (1) 5-ft Reduced OGF segment] INSTALLATION DATA Actual Pile Length (ft) & Segment Length (ft) input complete 141 00 Table rows for the Pile & Segment Lengths input complete Plan Top Elev. (ft, NGVD): 60.00 Table input of the table PUMP COUNT data, for the bottom/1st lift is complete Plan Length (ft): F Plan Tip Elev. (ft, NGVD): 81.00 Actual Pile Diameter = Plan Pile Diameter, meets 455 spec Е Plan Dia. (ft): 2.00 Flow Cone Test, FAILED (Consistency < 21 sec) Е GSE (ft, NGVD): 140.00 D Note: ACTUAL initial pump count OK, > or = THEORETICAL (Min. Req'd Grout Head) В Drilling START (time): 12:35 PM Actual Grout volume placed is OK. All incr. segments are > or = the min. Theoretical OGF volume req'd A Grout Return > or = the 'Min. Req'd Grout Head' (5 ft) input above Auger Rate (rpf): С Drilling FINISH (time): 12:43 PM Reinforcement Placement Time, -15 min, meets 455 spec limit (< or = 30 min). κ Drilling TIME (min.): 8 Follow-up to verify the Grout meets the Minimum Required Strength Actual Pile Dia. (ft): 2.00 141.00 Actual Pile Top Elev. (ft, NGVD): GROUT VOLUMES Overburden Length (above Plan Top) (ft): n/a Type of PUMP COUNT input = 'INCREMENTAL': T Actual Pile Length (below Pile Top)(ft): 60.00 DEPTH (ft) GROUT INCREMENTAL SEGMENT SOIL PUMP COUNT Actual Tip Elev. (ft, NGVD) 81.00 ACCRUEE EL INCR Actual Cond. Pressure Theor. Below Top of D Plant No.: 1 or 2 Concr. Trucks (ft, NGVD) (SUM) % Theor. S, M, or H (psi) (Per 5 ft) (cu ft) (cu ft) Тор Segment R T2 Start Depth (ft): 2nd Truck 1st Truck 0 (Pile TOF 141.00 Soil Cond.: Start input at Pile TOP, Grout Pump Count: start input at Pile BOTTOM T 5 0 25.93 Delivery Ticket No.: 41401211 41401209 136.00 185 33 324 15.71 165 % L Batch (time): 11:16 AM 10:40 AM L 10 5 131.00 291 22.79 185 29 15.71 145 % T 11:52 AM 11:20 AM 15 10 126.00 262 15.71 18.07 115 % Arrive (time): 185 23 Ν Flow Cone Test (sec): 15 15 20 15 121 00 185 24 239 15.71 18.86 120 % G Grout Temp. (ºF): 25 20 116.00 185 23 215 15.71 18.07 115 % Grout Cylinders LOT (ID): & 111.00 Sample 8 30 25 185 24 192 15.71 18.86 120 % 12:47 PM 12:43 PM 115 % Placement START (time): 35 106.00 185 30 23 168 15.71 18.07 G Starting Pressure (psi): 185 185 40 35 101.00 185 23 145 15.71 18.07 115 % R 45 96.00 Actual Initial Pump Count (strokes) 22 40 185 15.71 18.07 115 % 23 122 0 Auger Depth @ Grout Return (ft): 50 50 45 91.00 185 23 99 15.71 18.07 115 % U Truck Empty (time): 12:47 PM Т 55 50 86.00 185 24 76 15.71 18.86 120 % Т 12:50 PM 12:47 PM Placement FINISH (time): 60 55 81.00 185 52 52 15.71 40.86 260 % Ν Placement TIME (min.): 3 4 G Mixer TIME (min.): 127 Reinf. Condition Satisfactory? (Y or N): v Т Α Reinf. Placement START (time): 12:22 PM В 12:35 PM Reinf, Placement FINISH (time): L 3" Centerbar Reinf. Comments: Е Check GROUT STRENGTH TESTING Results Does the Grout Meet the 1st Truck 2nd Truck Minimum Required Stength? () Pile BOTTOM @ depth = 60 ft 5800 324 188.50 135 % or N) Comments: Total Pump Strokes Total Theor. Vol. (cf) Actual/Theor. (%) Actual Curve Auger Cast Pile - Grout Curves ----- Theoretical Curve 70

	GROUT VOLUME PLACEMENT RESULTS											
	VOLUME	ES (cu ft)	%	6 THEORETI	ACCEPTANCE							
SEGMENT Descr.	Actual	Theor.	OGF	% Theor.	9/ Ouer	Min. %						
	Placed	Vol.	%	Actual/Theor	% Over	Placed						
TOP 5-ft	25.93	15.71	105	165 %	60 %	165 %	Pass					
BELOW 5-ft	228.64	172.79	115	132 %	17 %	115 %	Pass					
Total Pile	254.57	188.50	114	135 %	135 % Pile Pa		Pass					

Р

Ν

D

B

L

G

G

0

s

E

Е

L

T E

S T

FINAL	ACEPTANCE	Pile Not Yet Accepted						
Accep	ted or Rejected? (input '	'A" or "R"):						
Pi	le Acceped or Rejected (c	late):						
Comments:								

Construction

	01/16
Page:	1

ACCRUED

Actual

(cu ft)

178.35

153.75

129.15

108.39

89.18

70.73 52.28

33.83

178.35

Actual (cf)

						Auger	FI Ca	lorida De st-In-F	epartment o Place Pile	of Transpo e Instal	ortation lation	Record	I	Pile	Number / ID	:		700-01 Constru		
					-	3			Worksh	neet					L2			(
PROJECT:								Comme	ents:								Pa	ge:		
FP ID Number:	86	6 166						24" Lat	eral Test		umber / ID: L2									
Project Descr.:	D	FI Resea	rch Pr	oject									Pile Locati	on:	Okahum	pka FL				
Contractor:	D	FI ACIP I	Pile Co	mmittee									Installation	Date:	10/27/16	;				
Structure No./IE	D: Te	est Area											Inspector (s):	Clay Dav	∕is				
THEORETIC	CAL: calcu	lated OGF	- Vol. &	Strokes	THE	DR.						-								
Segment /	Incr.	OGF	VOL.	PUMP	100%	Vol.	Seg	ment Len	igth (ft):			5.00)		PUMP	CALIBRAT				
Length (ft)	(%)	(cu ft)	STROKE	6 (cu	ft)	ц R	educed O	GF (Top 5 ft S	Segment on	lly):	1.05	5	VOLUME a	f Containe	r (cu ft):		6.15		
1 ft INCREM	MENT:		3.61	5	3.1	4	00	vergrout F	Factor OGF (E	Below 5 ft de	epth):	1.15	5 5	STROKES	to Fill Cont.	(strokes):		8		
		115					N ead	lin. Req'd	Grout Head	(ft):		5.00)	PUMP CAL	. (cu ft/stro	ke):		0.77		
5 ft *SEGME	NT(s):		18.06	3 24	15.	71	ŤΤ	heor. Initi	al Pump Cou	nt (strokes):	21								
5 ft Top SEG	MENT:	105	16.49) 22	15.	71	Pres	ssure Ga	ge Location ((descr.):										
PILE Vol.	& Stroke	TOTALS:	142.9	4 186	125	66	Gro	ut Design	Strength (pa	si):		600	0	Design C	apacity:	3	30 tons			
* Qty of (7) full 1	15%-OGF,	5-ft segmen	ts, in this	40-ft pile [b	elow the top	(1) 5-ft R	educe	ed OGF seg	gment]											
	INS	TALLAT	ION [Actual Pil	e Length (ft) &	& Segment	Length (ft)	input comp	lete.							
Plan Top E	lev. (ft, N	GVD):			141.00)		Table row	vs for the Pile	& Segment	Lengths in	nput comple	ete.							
L Plan Lengtl	h (ft):			L	40.00		F	Table inp	ut of the table	PUMP CO	UNT data,	for the bott	om/1st lift is	complete.						
N Plan Tip El	ev. (ft, NC	aVD):			101.00)	Ē	Actual Pil	e Diameter =	Plan Pile D	iameter, m	neets 455 sp	Dec.							
Plan Dia. (ft):				2.00		Е	Flow Con	e Test, FAILE	D (Consiste	ency < 21	sec)								
GSE (ft, N	IGVD):				140.00)	D	Note: AC	TUAL initial p	oump count	OK, > or :	= THEORE	FICAL (Min.	Req'd Grou	it Head)					
Drilling STA	ART (time):			11:40 A	М	A	Actual Gr	out volume pl	aced is OK	. All incr. s	segments a	re > or = the	e min. Theo	retical OGF	volume red	q'd.			
D Auger Rate	e (rpf):						ĉ	Grout Re	turn > or = the	e 'Min. Req	'd Grout H	ead' (5 ft)	input above							
R Drilling FIN	ISH (time):		L	11:45 A	Μ	K	Reinforcement Placement Time, -705 min, meets 455 spec limit (< or = 30 min).												
	IE (min.):			г	5			Grout meets the Minimum required Strength.												
Actual Pile	Dia. (ft):				2.00															
N Actual Pile	Top Elev.	(ft, NGVL)): 	L	141.00)							-	1	1					
Overburder	n Length (a	above Plai	1 I op) (1	t):	n/a	r			Type of PUMP	COUNT inpu	t = 'INCRE	EMENTAL' :	I			GROUT V		5		
Actual Pile	Length (be	elow Pile I	op)(ft):	L	40.00			DEI	PIH (ft)	SEGMENT	SOIL	GROUT	PUMP	COUNT	IN TI	CREMENTA	AL	ACCF		
Actual Tip I	Elev. (ft, M	IGVD):		T 1	101.00)	D	Below	Top of	EL	Cond.	Pressure	INCR.	ACCRUED	Theor.	Act	ual	Act		
Plant No.:			1 or 2 Ci	oncr. Trucks:	1		R	Гор	- Segment	(ft, NGVD)	S, M, or H	(psi)	(Per 5 ft)	(SUM)	(cu ft)	(cu ft)	% Theor.	(cu		
Dellaren Ti	-1+ NI	г		г.Г		CK		0	(Plie TOP)	141.00	Soli C	Jond.: Start	Input at Pile	10P, Grout		start input	at Pile BO	170		
Delivery Lic	CKET NO.:				4140120	16	L	5	- U	136.00		185	32	232	15./1	24.60	157 %	1/8		
Batch (time	e):			-	9:48 AI		I	10	- 5	131.00		185	32	200	15./1	24.60	157 %	153		
Arrive (tim	e): Teet (eee)				10:11 A	IVI	Ň	15	- 10	126.00		185	27	168	15./1	20.76	132 %	129		
Flow Cone		•			17		G	20	- 15	110.00		105	20	141	15.71	19.22	117 0/	100		
G Grout Culing	µ. (-r). dara I OT	(ID)			Sampla	6	0	20	- 20	111.00		105	24	02	15.71	10.40	117 %	09. 70		
O U D	CTADT /	(ID). mo):			11.45 A	M	ά	25	- 20	106.00	-	105	24	52	15.71	10.45	117 /0	70. 50		
T Starting Pre		ne). si)·			185	IVI	G	40	- 35	101.00		185	24	44	15.71	10.40	215 %	32.		
	al Pumn C	ount (stro	kos).		22		R		- 00	101.00		105			13.71	00.00	210 /0	55.		
Auger Dept	h@Grou	t Beturn (H).		5.0		0		-					+						
Truck Emp	tv (time):	(netani (<i>.</i> ,.		0.0		Т		-					+						
Placement	FINISH (tin	ne).			11.20 A	М	i		-					+						
Placement	TIME (mi	n) [.]		L	5		Ν		-					+						
Mixer TIMF	(min) [.]	,.			, , , , , , , , , , , , , , , , , , ,		G		-					+						
 Beinf, Cond 	dition Satis	sfactory?	Y or N)		Y		т		-					+						
T Reinf, Place	ement ST/	ART (time):):		11:50 A	М	Å		-					+						
E F Reinf, Place	ement FIN	ISH (time):		12:05 A	M	В		-					-						
L Reinf. Com	ments:	#11	Center	bar - 12x#8	Cage x 35	ft	L		-					+						
T Cheo	ck GROL	JT STRE	NGTH	TESTING	Results	-	F		-					+						
E Does the	Grout Mee	t the		Ē	1st True	k			-					1						
S Minimum Re	quired Sten	gth? (Y			6220	ŀ		Pile BC	OTTOM @ dept	th = 40 ft		+	232		125.66		142 %	178		
Comments:	,					ł						Total Pu	mp Strokes	Total The	or. Vol. (cf)	Actual/Th	neor. (%)	Actua		
	I																			
								Auger Cast Pile - Grout Curves							<u>_</u> A + T	ctual Curve	urve			
	GROUT	VOLUM		CEMENT	RESULT	s			45											
	VOLUME	ES (cu ft)		THEORF	ICAL	ACCE	PTAN	ICE	40						-*					
SEGMENT	Actual	Theor.	OGF	% Theor.		Min. %	5	- .	_ 35									+++		
Descr.	Placed	Vol.	%	Actual/Theo	r % Over	Placed	1 1	P/F	Ë 30											
TOP 5-ft	24.60	15.71	105	157 %	52 %	157 %	F	Pass	G 25											

FINAL	ACEPTANCE	Pile Not Yet Accepted						
Accept	ted or Rejected? (input '	'A" or "R"):						
Pi	le Acceped or Rejected (c	late):						
Comments:								

115

114

140 %

142 %

25 % 117 %

Pile Pass/Fail:

Pass

Pass

BELOW 5-ft

Total Pile

153.75

178.35

109.96

125.66

700-011-03
Construction

				۸.		Florid	a Depa	artment	of Transp	ortation	Pagard	I	Pile	Number / IE):		700-011-03			
				AL	iger (Jast-I	n-Pia	Works	e instai heet	lation	Record			L1		(Onstruction 01/16			
PROJECT:						C	omments									Pag	ge: 1			
FP ID Number:	86 166					18	" Lateral	Test				Pile Numb	er / ID:	L1						
Project Descr.:	DFI Resea	arch Proje	ct									Pile Locati	on:	Okahumpka FL						
Contractor:	DFI ACIP	Pile Comr	nittee									Installation	Date:	10/27/10	3					
Structure No./ID:	Test Area											Inspector	(s):	Clay Da	vis					
THEORETICAL: ca	alculated OG	F Vol. & Str																		
Segment / Incr.	OGF	VOL.	PUMP	100% V	ol. S	Segment	Length	n (ft):			5.00)		PUMP	CALIBRA	TION				
Length (ft)	(%)	(cu ft)	STROKES	(cu ft)	Ц	Reduc	ed OGF	(Top 5 ft	Segment on	ly):	1.0	5	VOLUME a	of Containe	r (cu ft):		5.50			
1 ft INCREMENT:		2.03	3	1.77	0	Overg	rout Fac	tor OGF (I	Below 5 ft de	epth):	1.1	5	STROKES	to Fill Cont	. (strokes)	:	7			
	115				ead	Min. F	leq'd Gi	rout Head	(ft):		5.00)	0.79							
5 ft *SEGMENT(s):		10.16	13	8.84		Theor	Initial F	Pump Cou	unt (strokes):	12									
5 ft Top SEGMENT:	105	9.28	12	8.84		ressure	Gage	Location	(descr.):		600	0	Desire			15 40 40				
PILE Vol. & Stro	Ke TOTALS:	80.41	103 ft pilo [bolo	70.69		arout De	sign St	rength (p	ISI):		600	0	Design C	apacity:		15 tons				
				w the top (1)) 5-11 Heo		- segm	ent j	0. Commont	Leventh (ft)		lata								
Plan Top Eloy (ft		ION DA		1/1 00		Tabl	a rowe f	or the Pile	& Segment	Length (It)		nele.								
P Plan Length (ft):	, NGVD).			40.00		acie rows for the Pile & Segment Lengths input complete.														
A Plan Tin Elev (ft	NGVD).			101.00		Actual Pile Diameter = Plan Pile Diameter, meets 455 spec														
Plan Dia. (ft):			F	1.50			Cone T	est. FAIL F	ED (Consiste	ency < 21	sec)									
GSE (ft, NGVD):				140.00	- <u> </u> ¦	D Note	: ACTL	JAL initial r	pump count	OK, > or =	- THEORE	TICAL (Min.	Req'd Grou	It Head)						
Drilling START (ti	me):		\vdash	9:20 AM	- i	B Actu	al Grout	t volume p	laced is OK	All incr. s	egments a	re > or = th	e min. Theo	, retical OGF	[:] volume rr	eq'd.				
Auger Rate (rpf):						A Grou	it Returi	י 1 > or = th	ne 'Min. Req	d Grout He	ead' (5 ft)	input above								
R Drilling FINISH (ti	me):			9:26 AM		C Reir	nforcem	ent Placer	ment Time, 7	7 min, mee	ets 455 spe	c limit (< or	= 30 min).							
L Drilling TIME (mir	ı.):			6		Grou	it meets	the Minim	num required	d Strength.										
L Actual Pile Dia. (f	t):			1.50																
N Actual Pile Top El	ev. (ft, NGVI	D):		141.00																
G Overburden Lengt	h (above Pla	n Top) (ft):		n/a		·	Ту	pe of PUMP	P COUNT inpu	t = 'INCRE	MENTAL' :	Ι			GROUT	VOLUMES	;			
Actual Pile Length	(below Pile 7	Top)(ft):		40.00			DEPT	H (ft)	SEGMENT	SOIL	GROUT	PUMP	COUNT	IN	ICREMENT	AL	ACCRUED			
Actual Tip Elev. (t, NGVD):			101.00		Be	low	Top of	EL	Cond.	Pressure	INCR.	ACCRUED	Theor.	Ac	tual	Actual			
Plant No.:		1 or 2 Concr.	. Trucks:	1			op -	Segment	t (ft, NGVD)	S, M, or H	(psi)	(Per 5 ft)	(SUM)	(cu ft)	(cu ft)	% Theor.	(cu ft)			
			· · · · · · ·	1st Truck	<u> </u>	1	0	(Pile TOP)	141.00	Soil C	Cond.: Start	input at Pile	TOP, Grout	Pump Coun	t: start inpu	it at Pile BO	TTOM.			
Delivery Ticket No	.:			41401201	_ ! !	L	5 -	0	136.00	-	185	13	123	8.84	10.21	116 %	96.64			
Batch (time):				8:20 AM	_ '		0 -	5	131.00		185	14	110	8.84	11.00	124 %	86.43			
Arrive (time):				8:43 AM	I	N 1	5 -	10	126.00		185	14	96	8.84	11.00	124 %	75.43			
Flow Cone Test (s	ec):			18		G	- 0	15	121.00		185	14	82	8.84	11.00	124 %	64.43			
G Grout Temp. (ºF):				<u> </u>		2	25 -	20	116.00		185	14	68	8.84	11.00	124 %	53.43			
Grout Cylinders LC	DT (ID):			Sample 3		& 3	- 00	25	111.00		185	14	54	8.84	11.00	124 %	42.43			
U Placement START	(time):			9:26 AM		3	- 55	30	106.00		185	14	40	8.84	11.00	124 %	31.43			
Starting Pressure	(psi):			185	— i	R 4	- 0	35	101.00		185	26	26	8.84	20.43	231 %	20.43			
Actual Initial Pump	Count (stro	okes):		13	- (C	-						+							
Auger Depth @ Gr	out Heturn (π):		8.0	- !	U	-						-							
	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			0.20 AM	-	 	-													
Placement TIME	(unie).			3.23 AIVI	I	N	-						+							
Mixor TIME (min	(111111.). 			3	(G							-							
Reinf Condition S	atisfactory?	(X or NI):		v		т							+							
T Reinf Placement	START (time	(· · · · · · ·). a):		9:29 AM	\dashv	Å	-						+							
E Reinf, Placement	FINISH (time	-/· a):		9:36 AM	−† í	в	-						+							
L Beinf Comments	#1	1 Centerba	r - 8x#8 Ca	age x 35 ft		L	-						+							
T Check GR	OUT STRE	NGTH TE	STING F	Results		E	-						-							
E Does the Grout M	feet the			1st Truck			-						-		·					
5 Minimum Required S T or N) :	tength? (Y			6750		P	ile BOTT	OM @ dep	oth = 40 ft		1	123		70.69		137 %	96.64			
Comments:]				Total Pu	mp Strokes	Total The	or. Vol. (cf)	Actual/7	heor. (%)	Actual (cf)			
							I													
									Auger	Cast Pi	le - Gro	ut Curve	s	A	ctual Curve					
							4	15					-			Juive				
GRO	JT VOLUM	IE PLACE	MENT R	ESULTS				10					,							
VOLU	IMES (cu ft)	% TH	EORETIC	CAL	ACCEPT	ANCE	,	25							\nearrow					
Descr. Actua	al Theor.	OGF %	Theor.	% Ovor	Min. %	D/E	Ĵ.	55												
Place	d Vol.	% Ac	tual/Theor	10 Over	Placed	F/F	t.	30												
TOP 5-ft 10.2	8.84	105	116 %	11 %	116 %	Pass	dn-t	25							$\pm\pm\pm$					
BELOW 5-ft 86.43	61.85	115	140 %	25 %	124 %	Pass	ttou	20		_					+++					
Total Pile 96.6	4 70.69	114	137 %	Pile Pas	ss/Fail:	Pass	q)	15												
[epth	10												
FINAL ACE	TANCE		Pile N	lot Yet Acc	epted		ă	2												
Accepted or F	lejected? (i	input "A" or	"R"):					°												
Pile Acce	ped or Rejec	ted (date):						0	20		40	6	0	80		100	120			

Comments:

Grout Volume (cu ft)

700-011-03

					F	-lorida	Depar	tment o	of Transp	ortation			Pile	Number / IC):		700-011-03		
				Α	uger Ca	ast-Ir	n-Plac	e Pil	e Instal	lation	Record	I		F1		(Constructior		
							V	Vorkst	neet							D -	01/16		
PROJECT:	86 166					Con	nments:	lo				Pilo Num	bor / ID:			Pag	ge: 1		
Project Descr	DEL Bese	arch Pro	viect										tion:	∟ I Okahumoka Fl					
Contractor:	DFI ACIP	Pile Cor	nmittee			_						Installatio	n Date:	10/27/1f					
Structure No /ID:	Test Area											Inspector	(s):	Clay Da	vis				
THEORETICAL: ca	alculated OG	F Vol. & S	Strokes	THEO							nopeotor	(0).	olaj Da						
Segment / Incr.	OGE	ament l	enath	(ft):			5.0	0		PUMP	CALIBRA	TION							
Length (ft)	(%)	(cu ft)	STROKES	(cu f) <u> </u>	Reduce	d OGF (Top 5 ft S	Segment on	ily):	1.0	5	VOLUME o	f Containe	er (cu ft):		5.50		
1 ft INCREMENT:		2.03	3	1.77	7 00	Overgro	ut Facto	r OGF (E	Below 5 ft de	epth):	1.1	5	STROKES	to Fill Cont	. (strokes):		7		
	115				g	Min. Re	q'd Gro	ut Head	(ft):	• •	5.0	0	PUMP CAL	(cu ft/stro	oke):		0.79		
5 ft *SEGMENT(s):		10.16	13	8.84	ι Ξ	Theor. I	nitial Pu	imp Cou	unt (strokes):	12	• I			-				
5 ft Top SEGMENT:	105	9.28	12	8.84	l Pre	essure (Gage Lo	cation	(descr.):	-									
PILE Vol. & Stro	ke TOTALS:	80.41	103	70.6	9 Gr	out Des	ign Stre	ngth (p	si):		600	0	Design Ca	apacity:					
* Qty of (7) full 115%-OC	GF, 5-ft segme	nts, in this	40-ft pile [bel	ow the top (I) 5-ft Reduc	ced OGF	segmen	t]											
IN	ISTALLA	TION D	ATA			Actua	Pile Lei	ngth (ft) 8	& Segment	Length (ft)	input comp	olete.							
Plan Top Elev. (ft	, NGVD):			141.00		Table	rows for	the Pile	& Segment	Lengths ir	nput comple	ete.							
Plan Length (ft):				40.00		F													
A Plan Tip Elev. (ft,	NGVD):			101.00	F	Actual Pile Diameter = Plan Pile Diameter, meets 455 spec.													
Plan Dia. (ft):				1.50	E	Flow (Cone Te	st, FAILE	ED (Consiste	ency < 21 s	sec)								
GSE (ft, NGVD):				140.00	D	Note: ACTUAL initial pump count OK, > or = THEORETICAL (Min. Req'd Grout Head)													
Drilling START (ti	me):			9:00 AN	B	Actual Grout volume placed is OK. All incr. segments are > or = the min. Theoretical OGF volume req'd.													
D Auger Rate (rpf):						Grout Return > or = the 'Min. Req'd Grout Head' (5 ft) input above.													
R Drilling FINISH (ti	me):			9:04 AN	L К	Reinf	orcemer	nt Placen	ment Time, 7	7 min, mee	ets 455 spe	ec limit (< c	r = 30 min).						
L Drilling TIME (mir	າ.):			4		Follov	v-up to v	verify the	Grout meet	ts the Minii	num Requ	ired Streng	th.						
Actual Pile Dia. (f	t):			1.50															
N Actual Pile Top El	ev. (ft, NGV	D):	L	141.00								1							
Overburden Lengt	h (above Pla	n Top) (fl	t):	n/a			Туре	of PUMP	COUNT inpu	t = 'INCRE	MENTAL' :	I			GROUT \	OLUMES	6		
Actual Pile Length	(below Pile	Top)(ft):	L	40.00			DEPTH	(ft)	SEGMENT	SOIL	GROUT	PUMF	COUNT	IN	ICREMENT.	AL	ACCRUED		
Actual Tip Elev. (ft, NGVD):			101.00	D	Belo	w	Top of	EL	Cond.	Pressure	INCR.	ACCRUED	Theor.	Ac	tual	Actual		
Plant No.:		1 or 2 Co	ncr. Trucks:	2	R	Тор	-	Segment	t (ft, NGVD)	S, M, or H	(psi)	(Per 5 ft	(SUM)	(cu ft)	(cu ft)	% Theor.	(cu ft)		
T2 Start Depth (ft)		2nd Tr	uck	1st Truc	<u>k</u>	0	(F	Pile TOP)	141.00	Soil (Cond.: Start	input at Pile	TOP, Grout I	Pump Count	t: start input	t at Pile BO	TTOM.		
Delivery Ticket No).: 	414012	201	41401199		5	-	0	136.00		185	16	138	8.84	12.57	142 %	108.43		
Batch (time):		8:20 A	AM	8:00 AN		10	-	5	131.00		185	16	122	8.84	12.57	142 %	95.86		
Arrive (time):		8:43 A	M	8:25 AN	N N	15	-	10	126.00		185	18	106	8.84	14.14	160 %	83.29		
Flow Cone Test (s	sec):	18		15	G	20) -	15	121.00		185	14	88	8.84	11.00	124 %	69.14		
G Grout Temp. (ºF):					_	25	-	20	116.00		185	17	74	8.84	13.36	151 %	58.14		
Grout Cylinders LC	DT (ID):	Sampl	e 2		&	30	-	25	111.00		185	14	57	8.84	11.00	124 %	44.79		
U Placement START	(time):	9:06 A	AM	9:04 AN	G	35	-	30	106.00		185	14	43	8.84	11.00	124 %	33.79		
Starting Pressure	(psi):	185		185		40) -	35	101.00		185	29	29	8.84	22.79	258 %	22.79		
Actual Initial Pump	o Count (stro	okes):		13	0		-			-			_						
Auger Depth @ Gr		(π):		13.0			-						_						
	e):	0.07 /		9:06 AIV			-						_						
Placement FINISH	(time):	9.07 F	AIVI	9.06 AIV	<u> </u> N		-						_						
Mixer TIME (min	(11111.). \.			66	G		-						_						
Roinf Condition S). atisfactory?	(V or NI):		V									_						
S Reinf Placement	CTADT (tim	(10114).								-			_						
E E E E Boinf Placement		c).		0.14 AM	B								_						
L Beinf Comments:		s). c	8" Centerba	3.14 Alv	<u> </u>								_						
T Check GB		NGTH	TESTING	Results	E		-			-			_						
E Does the Grout M	Aeet the	2nd Tri		1st Truc	<		-						-						
S Minimum Required S	Stength? (Y	6430	n –	101 1100	<u> </u>	Pile	BOTTO	M @ den	ath = 40 ft		ł	138		70.69		153 %	108 43		
Comments:		0400			_			in e dop	- 10 II		Total PL	Imp Strokes	Total The	pr. Vol. (cf)	Actual/T	heor. (%)	Actual (cf)		
									Augor	Cast Pi	ilo Gro		20	<u>_</u> _A	ctual Curve				
							45		Auger	Casi F	ile - Giu		<u>75</u>	+T	heoretical C	urve			
GRO		IE PLAC	CEMENT	RESULTS															
VOLU	JMES (cu ft)	%	THEORET	CAL	ACCEPTA	NCE	40						/						
SEGMENT Actua	al Theor.	OGF	% Theor.		Min. %		~ 35												
Place	d Vol.	%	Actual/Theor	% Over	Placed	P/F	ت 30	-											
TOP 5-ft 12.57	7 8.84	105	142 %	37 %	142 %	Pass	q 25					/							
BELOW 5-ft 95.86	61.85	115	155 %	40 %	124 %	Pass	bo on												
Total Pile 108.4	3 70.69	114	153 %	Pile Pa	ass/Fail:	Pass	(pott				-								
		1 1		1			15 15												
FINAL ACE	PTANCE		Pile	Not Yet Ac	cepted		0 10	1		/					\pm				
Accepted or F	Rejected? (input "A"	or "R"):				5		/							+			
Pile Acce	ped or Reje	ted (date	e):				0	1											
Comments:								0	20		40		60	80	1	00	120		

106

Comments:

Grout Volume (cu ft)

Appendix E

Automated Monitoring Equipment (AME) Grout Logs

© Copyright 2006 - Gamperl & Hatlapa GmbH - GUHMA Messdatenauswertung

[©] Copyright 2006 - Gamperl & Hatlapa GmbH - GUHMA Messdatenauswertung

[©] Copyright 2006 - Gamperl & Hatlapa GmbH - GUHMA Messdatenauswertung

© Copyright 2006 - Gamperl & Hatlapa GmbH - GUHMA Messdatenauswertung

[©] Copyright 2006 - Gamperl & Hatlapa GmbH - GUHMA Messdatenauswertung

[©] Copyright 2006 - Gamperl & Hatlapa GmbH - GUHMA Messdatenauswertung

[©] Copyright 2006 - Gamperl & Hatlapa GmbH - GUHMA Messdatenauswertung

Appendix F

Computed Radius Profiles from Automated Monitoring Equipment (AME) Data, Manual Grout Logs, and TIP Data

Figure F.1 Pile C1 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.2 Pile C2 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.3 Pile L1 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.4 Pile L2 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.5 Pile T1 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.6 Pile T2 Computed Radius from AME Data, Manual Grout Log, and TIP Data.

Figure F.7 Pile E1 Computed Radius from AME Data, Manual Grout Log, and TIP Data.